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Interictal spikes (IIS) refer to abnormal synchronized
neuronal discharges, which are hallmarks of epilepsy
and can be confirmed through electroencephalography
(EEG) [1]. In vitro analysis of resected temporal lobe tis-
sue from patients with refractory temporal lobe epilepsy
of hippocampal origin has revealed the presence of IIS
in the CA1 subfield. IIS are abolished when the Schaffer
collateral (SC) input from the CA3 subfield is cut [2].
The CA1 undergoes morphological changes including
cell death and the emergence of recurrent connections
between excitatory neurons following brain injury that
triggers epileptic seizures [3].
A question then arises: How are the morphological

network changes and input variability through SC
related to the CA1’s ability to generate IIS? To address
this issue, we develop a computational model of the
CA1 network. We characterize the morphological
changes within the CA1 network by changing the per-
centage of recurrent synaptic connections (average num-
ber of incoming synapses onto CA1 pyramidal cells).
Input variability is studied in two ways: (i) By changing
the fraction of CA1 pyramidal cells that receive input
from SC, and (ii) by changing the synchronization of
incoming input by varying the temporal window in
which SC input arrives. The CA1 computational net-
work is comprised of 280 neurons of which 80% are
pyramidal (excitatory) and 20% are inhibitory interneur-
ons. Each neuron is modeled using the Hodgkin-Huxley
framework of conductance based point neuron models.
Since pathological burst firing of pyramidal neurons,

referred to as the paroxysmal depolarization shift (PDS)
are known as the cellular correlates for IIS, we begin by
identifying a typical temporal profile of a cellular PDS
event that contributes to an observed IIS. We begin

with experimental data on IIS recorded from the CA1
subfield of an in vivo self-sustaining status electrical sta-
tus epilepticus animal model of chronic limbic epilepsy
[4]. We then generate template IIS events using a subset
of artificial PDS constructs. By matching the temporal
profile of the template IIS with the experimental IIS, we
identify the characteristics for PDS constructs that can
generate experimentally observable IIS. We then use
this information to tune the synaptic parameters of a
minimal network of a pyramidal cell coupled with inter-
neurons that is capable of generating a PDS event that
matches the temporal profile of the artificial PDS con-
struct in response to stimulation from external synaptic
input. The minimal model parameters are then incorpo-
rated into a detailed CA1 network model to study con-
ditions under which experimentally observable IIS are
produced.
We find that the CA1 network with low recurrent

connectivity, mimicking the topology of a normal brain,
has a very low probability of producing an IIS except
when a large fraction of CA1 neurons (>80%) receives a
quasi-synchronous barrage of input (events occurring
within a temporal window of 20 ms) via SC. However,
as we increase recurrent connectivity of CA1 (>40%) we
find that an IIS can be evoked in the CA1 network even
in the presence of low synchrony SC input (>80 ms
temporal window) and a low fraction of SC input to
CA1 pyramidal cells (>30%). For sufficiently high recur-
rent connections (40%), the model produces a sequence
of IIS in response to sparse asynchronous SC input.
These results indicate that as the CA1 becomes increas-
ingly excitable resulting from recurrent excitatory con-
nections, the ability to produce IIS increases with less
dependence on input variability. This in turn, suggests
that the CA1’s susceptibility to produce IIS increases
following brain injury, a finding that has been reported
in earlier experimental studies [5].
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