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Exogenous erythropoietin administration
attenuates intermittent hypoxia-induced
cognitive deficits in a murine model of sleep
apnea
Ehab A Dayyat1†, Shelley X Zhang1†, Yang Wang1, Zixi Jack Cheng2 and David Gozal1*
Abstract

Background: In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is
associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as
increased oxidant stress and inflammation. Such findings are markedly attenuated in rodents exposed to sustained
hypoxia 9SH) of similar magnitude. The hypoxia-sensitive gene erythropoietin (EPO) has emerged as a major
endogenous neuroprotectant, and could be involved in IH-induced neuronal dysfunction.

Methods and Results: IH induced only transiently increased expression of EPO mRNA in hippocampus, which was
continued in (SH)-exposed mice. IH, but not SH, adversely affected two forms of spatial learning in the water maze,
and increased markers of oxidative stress. However, on a standard place training task, mice treated with
exogenously administered EPO displayed normal learning, and were protected from the spatial learning deficits
observed in vehicle-treated (C) littermates exposed to IH. Moreover, anxiety levels were increased in IH as
compared to normoxia, while no changes in anxiety emerged in EPO-treated mice. Additionally, C mice, but not
EPO-treated IH-exposed mice had significantly elevated levels of NADPH oxidase expression, as well as increased
MDA and 8-OHDG levels in cortical and hippocampal lysates.

Conclusions: The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are
mediated, at least in part, by imbalances between EPO expression and increased NADPH oxidase activity, and thus
pharmacological agents targeting EPO expression in CNS may provide a therapeutic strategy in sleep-disordered
breathing.
Background
Obstructive Sleep Apnea (OSA), a disorder characterized
by repeated episodes of upper airway obstruction during
sleep, is now recognized as a major health problem in all
age groups, leading not only to significant cardiovascular
and metabolic morbidity, but also to cognitive and be-
havioral deficits. The neurobehavioral impairments are
associated with increased levels of oxidative stress and
inflammatory markers, and reversible gray matter losses
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in neural sites contributing to cognitive function have
been repeatedly described [1-5]. The episodic hypoxia-
reoxygenation cycles during sleep that characterize OSA
have been replicated in rodent models, and shown to
elicit neurodegenerative changes, increased oxidant
stress and inflammation, and impaired hippocampus-
dependent learning [6-16]. However, exposures to sus-
tained hypoxia of similar severity and duration are not
associated with major cognitive deficits [3], suggesting
that intrinsic differences in the presentation of the hyp-
oxic stimulus elicit differential genomic and proteomic
cellular responses that ultimately lead to divergent
susceptibility.
Erythropoietin (EPO), a prototypic cytokine and

hypoxia-sensitive gene, has been recently implicated in
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affording neuroprotection in conditions such as severe
brain hypoxia or ischemia [1,17-20]. However, the time
course of EPO expression during IH conditions mimick-
ing OSA has not been specifically examined. We hypothe-
sized that IH would elicit reduced induction of EPO
expression when compared to sustained hypoxia condi-
tions, which is not associated with significant deficits in
hippocampal long-term potentiation [11]. Furthermore,
we hypothesized that exogenous administration of recom-
binant human EPO would attenuate IH-induced NADPH
oxidase mediated hippocampal oxidative stress injury and
cognitive and behavioral deficits. In addition, we also
tested the effect of EPO treatment on other behavioral
paradigms for anxiety and depression, since such pro-
blems are frequently encountered in patients with sleep
apnea, as well as with IH-exposures [21].

Methods
Animals
Male C57BL/6J mice (20–22 grams) were purchased
from Jackson Laboratories (Bar Harbor, Maine), housed
in a 12 hr light/dark cycle (lights on from 7:00 am to
7:00 pm) at a constant temperature (26 ±1°C). Mice
were housed in groups of four in standard clear polycar-
bonate cages, and were allowed access to food and water
ad libitum. All behavioral experiments were performed
during the light period (between 9:00 am and 12:30 pm).
Mice were randomly assigned to either IH, SH, or room
air (RA) exposures. The experimental protocols were
approved by the Institutional Animal Use and Care
Committee and are in close agreement with the Guide
in the Care and Use of Animals. All efforts were made
to minimize animal suffering and to reduce the number
of animals used.
In a subset of mice, treatment with recombinant

human erythropoietin (rhEPO; Roche, Mannheim, Ger-
many) was carried out for the duration of IH exposures
and until all behavioral testing was completed. rhEPO
was dissolved in 0.1 mol/L phosphate-buffered saline
(PBS) containing 0.1% mouse serum albumin (Sigma) at
a stock concentration of 2500 IU/mL. EPO-vehicle con-
sisted of PBS containing 0.1% mouse serum albumin.
rhEPO was delivered by intraperitoneal (IP) injection at
a dose of 5000 IU/kg body weight in a daily fashion.
EPO-vehicle was delivered by IP injection with a volume
corresponding to that of rhEPO injection. This dosage
has been shown to effectively cross the blood brain bar-
rier in rodents [22-24].

Intermittent and sustained hypoxia exposures
Animals were maintained in 4 identical commercially-
designed chambers (30"x20"x20"; Oxycycler model
A44XO, BioSpherix, Redfield, NY) operated under a 12
hour light–dark cycle (7:00 am-7:00 pm) for 14 days
prior to behavioral testing. Oxygen concentration was
continuously measured by an O2 analyzer, and was chan-
ged by a computerized system controlling gas outlets, as
previously described [10], such as to generate stable ini-
tial oxyhemoglobin nadir values (SaO2) in the 65–72%
range for SH, and alternating every 180 seconds with
normoxia (SaO2> 95%) for IH conditions. In addition,
time-matched normoxic exposures (RA) were con-
ducted. Ambient temperature was kept at 22–24°C.
Behavioral testing
The Morris water maze was used to assess spatial refer-
ence learning and memory, as well as working memory.
The maze protocol is similar to that described by Morris
[25] with modifications for mice. The maze consisted of
a white circular pool, 1.4m in diameter and 0.6m in
height, filled to a level of 35cm with water maintained at
a temperature of 21°C (Morris 1984). Pool water was
made opaque by addition of 150 ml of non-toxic white
tempera paint. A Plexiglas escape platform (10 cm in
diameter) was positioned 1 cm below the water surface
and placed at various locations throughout the pool.
Extramaze cues surrounding the maze were located at
fixed locations, and visible to the mice while in the
maze. Maze performance was recorded by a video cam-
era suspended above the maze and interfaced with a
video tracking system (HVS Imaging, Hampton, UK).
Briefly, a standard place-training reference memory

task was initiated and conducted for 6 days on mice in
the water maze following exposures to 14 days of IH,
SH, or RA. One day prior to place learning, mice were
habituated to the water maze during a free swim. Place
learning was then assessed over six consecutive days
using a spaced training regimen that has been demon-
strated to produce optimal learning in mice [26]. Each
training session consisted of three trials separated by a
10 minute inter-trial interval (ITI). On a given daily ses-
sion, each mouse was placed into the pool from 1 of 4
quasirandom start points (N, S, E or W) and allowed a
maximum of 90 seconds to escape to the platform where
the mice were allowed to stay for 15 sec. Mice that failed
to escape were led to the platform. The position of the
platform remained constant during the trials. 24 h fol-
lowing the final training session, the platform was
removed for a probe trial to obtain measures of spatial
bias. To assess the performance in the water maze, mean
escape latencies and swim distance were analyzed.
Reference memory
Retention tests were carried out 14 days after acquisition
of the task. In the retention test, performance in a single
session (two trials) was assessed, and the mean average
performance of the two trials was calculated.
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Elevated plus maze (EPM)
The elevated plus maze (EPM) was used to assess anxiety.
The basic measure is the animal preference for dark,
enclosed places over bright, exposed places [27,28]. A 60 w
light was placed above the apparatus and the test was
video taped by an overhead camera. Mice were placed in
the center of the maze facing a closed arm, and allowed
to explore for 10 min in isolation. Each mouse received
one videotaped trial. Mice prefer to enter into closed arms
compared to open arms. Time spent in the dark area is
viewed as avoidance or anxiety-like behavior. The follow-
ing parameters were scored: (a) Percent time spent in
open and closed arms; (b) number of entries to closed
arms; (c) Time spent in the center. An arm entry was
defined as the entry of all four feet into either one of the
closed arm. Of note, the maze was cleaned with 30%
ethanol between trials to remove any odor cues.

Forced swimming test (FST)
Briefly, mice were individually forced to swim in an open
cylindrical container (diameter 14 cm, height 20 cm), with
a depth of 15 cm of water at 25± 1°C. The immobility
time, defined as the absence of escape-oriented behaviors,
was scored during 6 min, as previously described [29-31].
Each mouse was judged to be immobile when it ceased
struggling, and remained floating motionless in the water,
making only those movements necessary to keep its head
above water. The average percentage immobility was cal-
culated by a blinded experimenter.

Erythropoietin and NADPH oxidase expression
qRT-PCR analysis of EPO, EPO receptor, and p47phox
was performed using ABI PRISM 7500 System (Applied
Biosystems, Foster City, CA). PCR Primers and Taqman
probes for EPO and p47phox were purchased from ABI
(Applied Biosystems). Each reaction (25μl) contained 2.5
μl reaction buffer (10x), 6 mM MgCl2, 0.2 μM dNTP,
0.6 μM each primer, 0.25 μl SureStar Taq DNA Polymer-
ase and 2 μl cDNA dilutions. The cycling condition
consisted of 1 cycle at 95°C for 10 min and 40 three-
segment cycles (95°C for 30 s, 55°C for 60 s and 72°C for
30 s). Standard curves for gene of interest and house-
keeping gene (β-actin) were included in each reaction.
We found that the mRNA expression of β-actin was
stable after IH or SH exposures. Expression values were
obtained from the cycle number (Ct value) using the
MX4000 software (Stratagene, La Jolla, CA). EPO,
P47phox, and β-actin mRNA were performed in tripli-
cates to determine the Ct-diff. These Ct values were
averaged and the difference between the β-actin Ct
(Avg) and the gene of interest Ct (Avg) was calculated
(Ct-diff ). The relative expression EPO and p47phox was
analyzed using the 2-ΔΔCT method. Quantitative results
were expressed as the mean ± standard deviation (SD).
Immunohistochemistry
Animals were deeply anesthetized and perfused intracar-
dially with 4% phosphate-buffered paraformaldehyde. Ser-
ial sections were cut on a microtome. The free floating
sections were incubated with a goat anti-mouse polyclonal
EPO antibody(1:200 dilution; LS Biosciences;LS-C128821)
and anti-NeuN (1:1000 dilution; Millipore, clone A60).
Immunostained sections were further visualized with
FITC-conjugated or rhodamine-conjugated 2nd antibody.
Sections were initially assessed using a Nikon Ellipse E800
microscope, and subsequently with a confocal microscope
(Leica TCS SP5). To present the expression patterns in a
complete fashion, a montage of photomicrographs was
assembled using Adobe Photoshop 8.0.

Lipid peroxidation assay
MDA-586 kits (OxisResearch, Portland OR) were used
to measure the relative malondialdehyde (MDA) produc-
tion, a commonly used indicator of lipid peroxidation
[31], in frontal brain cortex according to the manufac-
turer's instructions. Briefly, after anesthesia with pento-
barbital (50 mg/kg intraperitoneally), mice were perfused
with 0.9% saline buffer for 5 minutes and the cortex was
dissected, snap frozen in liquid nitrogen, and stored at
−80°C until assay the following day. Cortical and hippo-
campal tissues were homogenized in 20 mM phosphate
buffer (pH 7.4) containing 0.5 mM butylated hydroxyto-
luene to prevent sample oxidation. After protein concen-
tration measurements, equal amounts of proteins
(2.0–2.5 mg protein from each sample) were used in
triplicate to react with chromogenic reagents at 45°C
in 500 μL buffer for 2 hours. The samples were then
centrifuged and clear supernatants measured at 586
nm. The level of MDA production was then calcu-
lated with the standard curve obtained from the kit
according to the manufacturer's instructions.

8-hydroxydeoxyguanosine (8-OHDG) tissue levels
Levels of 8-OHDG were measured in frontal brain cor-
tex and hippocampus using a commercially available
assay (Cell Biolabs, San Diego, CA). Briefly, cortical
samples or 8-OHDG standards were first added to an 8-
OHDG/BSA conjugate preabsorbed enzyme immuno-
assay plate. After a brief incubation, an anti–8-OHDG
mAb was added, followed by an horseradish peroxidase-
conjugated secondary antibody. The 8-OHDG content
in the cortical samples was then determined by compari-
son with the 8-OHDG standard curve.

Erythropoietin tissue levels
Tissue concentrations of EPO were measured in dupli-
cate in hippocampal lysates using a commercially avail-
able ELISA assay (Quantikine cat #MEP00, R&D
Systems, Inc, Minneapolis, MN). This assay was linear
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between 22–3,000 pg/ml using a standard calibration
curve, and the intra- an inter-individual coefficients of
variability were 4.6% and 8.4%, respectively.

Primary neuronal cell cultures
Cortical neuronal cells were prepared from fetal mouse
brain cortex at embryonic stage 14.5 days (E14.5).
Manually dissociated brain cortical cells were plated in a
Petri dish coated with poly-L-ornithine (0.015g/L) in a
culture medium including neurobasal medium (Gibco),
Mix B27(Gibco), L-glutamine 250uM, glutaMax 250uM,
Antibiotic/Amycotic (Gibco) 1%. Half of the media in
the wells were removed and replaced with fresh culture
medium every 3 days. After 12 days in culture, primary
neuronal cells were used for in vitro IH experiments.
Cultured cortical neuronal cells were exposed to nor-
moxia or IH respectively in a computer controlled cell
incubator chamber that tightly controls O2 concentra-
tions in the cell culture medium and in the cell culture
chambers (Reming Bioinstruments, Redfield, NY). For
normoxia treatment, cells were cultured under normal
cell culture conditions (37°C, 95% air and 5% CO2 in a
humid incubator). For IH or SH treatments, cell were
treated with either alternations of 35min-5%O2/5%CO2
balance N2 followed by 25min-21% O2/5%CO2 balance
N2 (IH) or exposed to 5%O2/5%CO2 balance N2 (SH)
for 72 hrs in the presence or absence of pre-treatment
with EPO in culture medium (1,500 pg/ml). Cells were
collected, and RNA was isolated and subjected to qRT-
PCR analysis for NADPH oxidase p47phox subunit ex-
pression, as delineated above.

Data analysis
To elucidate the nature of interactions between IH, SH,
and RA conditions, all data were initially analyzed by
one way ANOVA. First, overall statistical significance
was determined for the entire training period between
the treatment groups. In addition, either two-way
repeated measures ANOVA or MANOVA were used to
analyze each trial block, followed by post-hoc Tukey
tests. Similar statistical approaches were used to com-
pare probe trial, reference memory, EPM and FST. For
all comparisons, a p value <0.05 was considered to
achieve statistical significance.
In all the experimental conditions, the data were

divided into 6 blocks (containing 3 trials/day). We used
a multivariate MANOVA model (SPSS software 17; Chi-
cago) that included latency, pathlength and swim speed
and two between factors: (1) Groups (four levels): RA-C,
IH-C, RA-EPO, and IH-EPO (2) Condition (two levels):
RA or IH. All F statistics are reported using Pillai’s
Trace. The interaction of three different factors, i.e.,
time, condition and group were determined using this
mixed model repeated measures MANOVA.
Results
EPO and NADPH oxidase expression
Cortical tissues from IH-, SH, and RA-exposed mice
were subjected to quantitative RT-PCR. Compared to
normoxia (RA), EPO expression was increased after 1
day SH and heightened expression levels were sustained
throughout the exposures (Figure 1A). However, al-
though a significant, albeit attenuated increase in EPO
mRNA occurred with IH, such changes were not sus-
tained (Figure 1A). In contrast, p47 subunit of NADPH
oxidase (P47phox) expression was increased in IH start-
ing at 3 days and sustained thereafter (Figure 1B), and
such changes were not apparent following SH
(Figure 1B). Although no changes occurred in EPO re-
ceptor expression during IH, mild increases in mRNA
expression of the EPO receptor emerged after SH at
days 7 and 14 of exposures (1.8 ±0.4 and 2.1 ± 0.5 fold of
normoxic controls, respectively; n = 6; p< 0.03). Further-
more, EPO treatment in IH-exposed mice resulted in
significant in vivo reductions in P47phox expression
(Figure 1C).
In a parallel study using embrionically derived neur-

onal primary cells, in vitro IH for 72 hours induced sig-
nificant increases in P47phox mRNA expression that
were not present in SH-exposures (Figure 2). Conversely,
marked increases in EPO mRNA occurred after SH, but
not after IH (Figure 2). Furthermore, addition of EPO at
concentrations similar to those found in brain tissue
lysates during SH (i.e., 1,500 pg/ml), markedly reduced
p47phox gene expression during IH (Figure 2).
EPO immunoreactivity was markedly increased in

SH-exposed mice, and seemed to co-localize with both
NeuN-positively labeled cells and other cells. However,
changes were absent or markedly attenuated in IH-
exposed mice (Figure 3). To further confirm EPO
changes in IH and SH conditions, EPO protein levels
were also assayed in hippocampal lysates harvested
from mice exposed to IH, SH or normoxic controls
(n = 8/experimental group). SH was associated with
marked increases in EPO tissue ocncentraitons at at all
time points, and such increases, although significant
when compared to normoxic conditions, were mark-
edly attenuated in IH exposures (Figure 4). In addition,
EPO administration was associated with significant
increases in hippocampal EPO tissue ocncentrations
(Figure 4).

Effects of IH, SH and EPO on blood hematocrit
Normoxic mice treated with vehicle had mean hemato-
crits (Hct) of 34.3 ± 1.7% as compared to significant
increases in Hct among EPO-treated normoxic mice
(54.5 ± 3.3%; p< 0.001). SH exposures were also asso-
ciated with significant and robust increases in Hct
(53.1 ± 3.7%; p <0.001 vs. RA). However, IH exposures
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coupled with vehicle treatment did not induce significant
changes in Hct (35.7 ± 1.3%; p> 0.05 vs. RA). Finally,
EPO administration in IH-exposed mice induced sub-
stantial increases in Hct (56.8 ± 3.1%; p< 0.001 vs. IH+
vehicle) that were similar to the effects of EPO in nor-
moxic mice.

Spatial learning performance
On a standard place discrimination task, wild type mice
exposed to 14 days of IH (IH-C) exhibited longer laten-
cies and pathlengths to locate the hidden platform when
compared to room air controls RA-C, RA-EPO, and IH-
EPO mice exposed to 14 days IH (n = 24 per experimen-
tal condition; Figure 5A and B). Overall latency analysis
for the entire trial blocks revealed significant changes
between the different treatment groups, [F(3,51) = 40.22;
p< 0.001] and pathlength, [F(3,51) =17.63; p< 0.001] in-
dicating that IH adversely affected task performance in
vehicle-treated mice. Significant differences in latencies
were observed during blocks 2 [F(3,51) =5.16; p< 0.01],
3 [F(3,51) =12.43; p< 0.001], 4 [F(3,51) =5.04; p< 0.01], 5
[F(3,51) =10.22; p< 0.001] and 6 [F(3,51) =7.67; p< 0.001].
There were no significant differences in block 1.



Figure 3 Erythropoietin immunoreactivity in cortex and hippocampus following intermittent and sustained hypoxic exposures in mice.
(A). Composite reconstructions of immunohistochemically processed brain sections double labeled for EPO (red fluorescence) and NeuN (green
flurorescence) immunoreactivity after IH (left) and SH (right). (B). Illustrative examples of EPO and NeuN labeling of hippocampus and frontal
cortex after IH or SH exposures.
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Repeated measures ANOVA revealed significant differ-
ences in pathlengths during blocks 3 [F(3,51) =7.25;
p< 0.001], 4 [F(3,51) =6.46; p< 0.001], 5 [F(3,51) =6.58;
p< 0.001] and 6 [F(3,51) =5.04; p< 0.02], with no signifi-
cant differences in blocks 1 and 2. There were no signifi-
cant differences in swim speed in these mice. In the
probe-trial test, one-way ANOVA revealed a significant ef-
fect of treatment [IH vs. RA: F(3,51) =15.27; p< 0.001]. The
magnitude of impairment was greatest in IH-C
(Figure 5C). Of note, identical training paradigms in SH-
exposed mice revealed no differences in task-acquisition
performance when compared to RA-C, RA-EPO, and IH-
EPO mice (data not shown). In the reference memory
tests, IH-C mice exhibited significant deficits in memory
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(Figure 5). In addition, repeated measures MANOVA with
swim speed, groups and conditions on the swim speed
showed no significant differences between the groups and
treatments (Figure 5).
Elevated plus maze and forced swim test
IH-C mice, but not IH-EPO mice, showed significant dif-
ferences in the percentage of time spent in the open arm
[F(1,48) = 78.21; p< 0.001] and in the number of entries
into the closed arm [F(1,48) = 22.67; p< 0.001] (Figure 7).
The results of the elevated plus maze showed that IH-C
spent significantly less time in the open arms (Figure 5;
group effect, [F(1,48) = 22.54; p< 0.001]) and significantly
more time in the center area (Figure 5; group effect, [F
(1,48) = 32.66; p< 0.001]). The number of entries into the
closed arms was significantly increased (Figure 7; condi-
tion effect, [F(1,48) = 17.44; p< 0.001]). Although, the per-
centage of time spent in the open arm is commonly used
as a measure of anxiety, we should also point out that the
time spent on the center platform of the maze and the
closed arm entries also reflect anxiety-like behaviors in
mice. Similarly, the overall time spent in immobility in
the forced swim test was significantly higher in IH-C
treated mice, while IH-EPO mice were indistinguishable
from normoxic controls (Figure 8).

8-OHDG levels and lipid peroxidation
The levels of 8-OHDG in homogenates of cerebral cor-
tex (data not shown) and the hippocampus were
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significantly higher in IH-C mice [F(1,32) = 44.72;
p< 0.01] and [F(1,32) = 31.64; p< 0.0001] respectively;
when compared to all other groups (Figure 9A). However
there were no significant differences in the levels of
8-OHDG in cortex of IH-EPO when compared to either
RA-C or RA-EPO controls.
Figure 9B shows MDA concentrations in homogenates

of cerebral cortex from all treatment groups. A signifi-
cant increase in MDA levels was observed in IH-C mice
[F(1,32) = 22.41; p< 0.001] in the cortex and [F

(1,32) = 69.13; p< 0.01] in the hippocampus when com-
pared to all other groups.

Discussion
OSA is a highly prevalent clinical condition across the life-
span that imposes important adverse neurobehavioral
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consequences. The neurocognitive and behavioral morbid-
ity that frequently accompanies this disease stems, at least
in part, from pathological inflammatory and oxidative
stress processes recruited by the intermittent hypoxia that
characterizes OSA [9,32]. Indeed, chronic IH has been
shown to induce increased cellular levels of ROS that con-
tribute to end-organ injury, including the CNS, a finding
that is not present in SH of similar magnitude [3]. In the
present study, we provide evidence that in contrast with
SH exposures, episodic hypoxic events elicit only a short-
lived increase in EPO expression in the brain, and con-
versely induce marked increases in the expression of
NADPH oxidase that are absent following SH. Taken to-
gether these findings point to an imbalance between injury
and defense mechanisms that is tilted towards generation
of end-organ damage and dysfunction in IH. However,
when EPO treatment was administered, marked reduc-
tions in lipid peroxidation and DNA oxidative damage
emerged, even during IH. Consequently, cognitive and be-
havioral deficits associated with IH were markedly attenu-
ated by EPO administration, suggesting that harnessing of
the EPO pathway response will afford neuronal protection
against the oxidative and inflammatory processes elicited
by IH during sleep.
The increased expression of NADPH oxidase during IH

was anticipated, and confirms previous work by Zhan and
colleagues [33] and our recent work [10], showing that
NADPH oxidase null mice are protected from IH-induced
cognitive deficits. Of note, other ROS-generating pathways
are putatively implicated in the cognitive and behavioral
deficits associated with IH exposures, and reductions in
oxidative stress and inflammatory signaling cascades
through pharmacological interventions, and through at-
tenuation of oxidative stress via targeted genetic manipu-
lations of several identified target genes will all reduce or
abrogate CNS dysfunction [3,9,12,13,15,34].
Depression and anxiety symptoms are frequent in

OSA patients [35]. The elevated plus-maze is the most
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frequently utilized animal model for assessing anxiety-
like behaviors [27], and provides the setting for a conflict
between two innate rodent behaviors, namely avoidance
of open space exposures and the tendency to explore
novel environments [36]. Our current findings show that
IH modified anxiety-like behavior in vehicle-treated mice
exposed to IH, and that such changes in elevated maze
performance disappeared upon administration of EPO,
suggesting that regions underlying these behavioral
responses are susceptible to IH, and the associated oxi-
dant stress. Of note, a palliative effect on neuronal via-
bility has been reported for apocynin, a putative
NADPH oxidase antagonist in animals exposed to IH
[37]. In this context, it is worthwhile to emphasize that
there are multiple possible sources for oxidative stress in
the context of IH [32], and it is therefore likely that such
multiple sources may not only adversely affect cognitive
function and EPO transcription in IH, but also that ex-
ogenous EPO administration may differentially influence
the magnitude of oxidative stress in these various com-
partments. These issues will obviously have to await
additional studies.
Considering the consensus view that assigns a coordi-

nated role for a number of interrelated pathways, i.e.,
glutamate excitoxicity, oxidative stress, mitochondrial
dysfunction, up-regulation of pro-inflammatory media-
tors, and altered regulation of pro- and anti-apoptotic
gene cascades in the injurious processes associated with
IH in the CNS [7,38], the protective role of EPO appears
to be well justified by the previous evidence indicating
that EPO is indeed operative in many of these pathways.
EPO is a typical HIF-1α-dependent cytokine that has
now conclusively been shown to be expressed and
induced in both neuronal and glial cell populations [17].
In the last decade, multiple lines of evidence have shown
that both endogenous and exogenous EPO has protect-
ive roles in CNS injury processes, such as ischemia-
reperfusion injury [19,20,39-44]. Although the presence
of functional EPO receptors in neurons has been chal-
lenged [45], EPO selectively reduced inflammatory and
oxidative stress processes associated with brain ischemia,
and prevented neuronal apoptosis [44]. Our current
findings show that the modality of the hypoxic exposure
is critically important for the induction of EPO expres-
sion, and that in contrast with SH, chronic IH does not
result in increased EPO expression, despite similar oxy-
hemoglobin desaturation levels in the 2 conditions. In
this context, we are unaware of specific comparisons be-
tween IH and SH and their effect on HIF-1α transcribed
genes in the CNS. However, studies on other tissues
such as endothelial cells [46], or perinatal adrenal chro-
maffin cells [38], have yielded conflicting results. Indeed,
either similar or divergent HIF-1α changes have been
reported. Of note, we have recently shown that SH is
not accompanied by significant deficits on a spatial hip-
pocampal task in rats [3,11], and our findings in the
current study extend these observations to mice. Ac-
cordingly, systemic treatment with rhEPO, which has
been shown to cross the blood brain barrier [22,23],
conferred a protective effect again IH-induced oxidative
stress, and prevented the cognitive and behavioral defi-
cits associated with IH. Notwithstanding, it is possible
that EPO-mediated beneficial effects may be also related
to changes in angiogenesis and the cerebral microvascu-
lature [47,48]. Indeed, evidence in children would sup-
port this assumption whereby changes in blood flow and
endothelial function have been linked to cognitive func-
tion in children with sleep apnea [49,50].

Conclusions
In summary, we have shown that prolonged SH, but not
IH, induces the expression of EPO in the CNS, and the
reciprocal effect occurs in the expression of NADPH
oxidase during these 2 hypoxic exposures. Furthermore,
we have shown that exogenous administration of EPO
during the course of IH exposures mitigates the cellular
oxidative stress damage and consequent behavioral
impairments associated with this murine model of OSA.
Although a direct mechanistic pathway can be defini-
tively established between EPO and NADPH oxidase in
the context of hypoxia-induced CNS susceptibility, this
study suggests that efforts aiming to increase either EPO
expression or the activation of EPO receptors in the
CNS may be a promising target for OSA treatment, es-
pecially in stopping the progression, and potentially re-
versing the well known OSA-associated cognitive and
behavioral morbidities.
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