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Abstract

Conclusions:

processing mechanism in the primary visual system.

L

Background: Animportant problem in selective attention is determining the ways the primary visual cortex
contributes to the encoding of bottom-up saliency and the types of neural computation that are effective to model
this process. To address this problem, we constructed a two-layered network that satisfies the neurobiological
constraints of the primary visual cortex to detect salient objects. We carried out experiments on both synthetic images
and natural images to explore the influences of different factors, such as network structure, the size of each layer, the
type of suppression and the combination strategy, on saliency detection performance.

Results: The experimental results statistically demonstrated that the type and scale of filters contribute greatly to the
encoding of bottom-up saliency. These two factors correspond to the mechanisms of invariant encoding and
overcomplete representation in the primary visual cortex.

(1) Instead of constructing Gabor functions or Gaussian pyramids filters for feature extraction as traditional attention
models do, we learn overcomplete basis sets from natural images to extract features for saliency detection.
Experiments show that given the proper layer size and a robust combination strategy, the learned overcomplete
basis set outperforms a complete set and Gabor pyramids in visual saliency detection. This finding can potentially
be applied in task-dependent and supervised object detection.

(2) A hierarchical coding model that can represent invariant features, is designed for the pre-attentive stage of
bottom-up attention. This coding model improves robustness to noises and distractions and improves the ability
of detecting salient structures, such as collinear and co-circular structures, and several composite stimuli. This result
indicates that invariant representation contributes to saliency detection (popping out) in bottom-up attention.

The aforementioned perspectives will significantly contribute to the in-depth understanding of the information

Background

Bottom-up attention has been widely studied in physiol-
ogy, psychology, neural science and computer vision. It is
usually attributed to early vision, such as to the manner
by which the primary visual cortex (V1) encodes low-level
features and forms a saliency map. Numerous studies have
explored theories and computational models to provide
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an efficient input to the saliency detection. For example,
Treisman and Gelade [1] developed the feature integration
theory to explain how primary visual features are pro-
cessed and represented with separate feature maps and
are later integrated into saliency maps. Koch and Ullman
[2] proposed a biologically plausible computational frame-
work to model the process that attracts focus-of-attention
to the most conspicuous areas. Several other hypothe-
ses were tested, including a saliency map created in the
primary visual cortex that does not need any feature com-
bination by Zhaoping Li [3], and those models motivated
by an imitation of information processing mechanisms
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in the V1 [4,5]. In addition, the effects of overcomplete
bases on encoding a bottom-up saliency map is of cur-
rent interest [6,7]. While more and more neurobiological
properties of the V1 have been accepted, the way they
modulate saliency detection remains unclear [8]. Models
limited to simple cell simulations cannot sufficiently sat-
isfy neurobiological constraints [9]. The receptive fields
of simple cells are too small to place competing stimuli
inside them, which is an important condition for atten-
tional experiments [10]. Thus, attentional modulation is
most prominent in higher cortical areas, where receptive
fields are wide and where several objects can compete
inside a single receptive field. Simple cells alone contribute
less strongly to selective attention, especially for complex
tasks (conjunctive search). The involvement of simple cells
with other mechanisms in the primary visual cortex, such
as complex cells or synchronised oscillation, to account
for the pre-attentive process seems to be more biologically
plausible. The effects of other mechanisms beyond simple
cells on bottom-up attention are worth exploring.

Recently, deep learning by a hierarchical network has
been thoroughly researched and successfully used in
object recognition [11,12]. The approach is regarded as
an ideal model to simulate the information representation
of humans. It provides a hierarchical learning mechanism
that gains invariant representation, and can be generalised
to include other coding strategies.

This paper aims to introduce deep network into saliency
detection and to investigate the influences of different
coding factors. We discuss two central questions and a
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series of related ones. First, does invariant representa-
tion in the V1 affect bottom-up attention? If so, what is
the optimal network structure to obtain invariance? Sec-
ond, what is the effect of overcomplete representation on
saliency detection? Another issue is the concomitant fea-
ture combination on such a massive scale. The overall
scheme of our model is given in Figure 1.

Traditional bottom-up attention models vs. our model
Bottom-up attention models extract multi-dimensional
features from an image and combine these features into
a saliency map where the most salient object will be
perceived.

In the feature extraction stage, computational models
motivated by imitation of the primary visual cortex often
use Gabor filters to extract orientation information at dif-
ferent scales. Properties of Gabor filters resemble simple
cells’ receptive fields and can provide input to the bottom-
up saliency map. Similar methods also use Gaussian pyra-
mids [13], Fourier transformation, or wavelets decompo-
sition [14] to extract features similar to the responses
of cells. One of representative models proposed by Itti
et al. [4] adopted Gaussian pyramids to extract color,
intensity, and orientation features at different levels. Grig-
orescu et al. [15] simulated complex cells and nonclassical
receptive field inhibition to detect salient contours. By
pooling the responses of two simple cells with orthogonal
phases, complex cells are insensitive to exact positions of
edges. Nonclassical receptive field inhibition benefits by
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Figure 1 Diagram of our model. An image is first convolved with each group of filters in the first layer, where the filters are organized into a
topographic array (filters and topography are learned by the PCICA algorithm beforehand). Outputs of that are rectified by the sigmoid and the
absolute functions. Then, in the second layer, the rectified outputs within each group are pooled to produce invariant representation, which is
subjected to the inhibition simulated by the convolution with the DoG function. Conspicuous maps from different groups are combined to

produce a final saliency map as output.
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suppressing homogeneous texture and thus salient con-
tours are perceived easily.

Our model differs from these traditional attention mod-
els in several aspects. First, we learn overcomplete basis
sets from natural images to extract features for saliency
detection, while they directly use Gabor function or other
wavelets as filters. Second, we design a hierarchical archi-
tecture to learn some invariance, while most attention
models use a single layer to perform filtering and thus
do not consider any invariance except the invariance to
positions. The invariance to positions is obtained in some
models [15] by summing energies of a pair of Gabor func-
tions with orthogonal phases. Our model learns a broader
range of invariance by first obtaining the overcomplete
topological basis set and then pooling the responses of
topological bases in the neighborhood. Third, our model
can detect global salient structures besides local salient
points. These two different kinds of saliency detection
are related with the definitions of saliency in space-based
attention and object-based attention.

Computationally, an explicit representation of saliency
in most models implements centre-surround differences.
A type of local spatial selection is presumed to be neces-
sary for preattentive feature detection [4]. Neurons in the
retina, lateral geniculate nucleus, and in the early visual
cortical areas are tuned to local contrast such as inten-
sity contrast and colour opponency [9]. For example, the
response of a retinal neuron tuned to the intensity of the
centre-surround contrast can be computed by convolving
the luminance channel of the input image by a Differ-
ence of Gaussians (DoGQ) filter. Another view of saliency
is provided with a global structure rather than with local
points. Typically, Gestalt psychologists defined saliency as
whether a structure respects certain perceptual organisa-
tion rules such as proximity, good continuity, and closure
[16]. Once local primitives form a structure satisfying
these rules, they will be perceived as a whole. In the exper-
iments, we tested our model using two kinds of saliency
detection tasks.

V1 coding models
Coding models simulating information processing mech-
anism in the V1 are often motivated by an imitation of the
properties of simple cells and complex cells. The Gabor
function is regarded as best describing the classical mod-
els of simple cells and complex cells. A single Gabor
wavelet is similar to the receptive field of a simple cell. The
square sum of the responses of a pair of Gabor wavelets
with orthogonal phases is similar to that of a complex cell.
However, this classical picture is incomplete. Cells in
V1 show much more receptive field properties compared
with what this simple model can explain. For example,
they show end-inhibition [17,18] and over-representation
of the orientation and frequency [19].
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Several coding models learned statistical properties
from natural images and developed receptive field proper-
ties that match those of cortical cells to describe the com-
plete picture. Hyvarinen and Hoyer proposed the inde-
pendent subspace analysis (ISA) [20] and the topographic
independent component analysis (TICA) [21]. Both mod-
els can extract the phase invariant and shift invariant
features similar to the responses of complex cells. Most
recently, deep learning [11,12] was deeply researched and
successfully used in object recognition. Wang et al. [22]
developed a more computationally efficient model based
on pairwise cumulant based methods for independent
component analysis (PCICA). It captured the topological
relationships by the pairwise cumulant to obtain results
similar to ISA and TICA with fast convergence. Obtaining
invariance by pooling is not new for object recognition.
Some works discussed advantages and disadvantages of
different pooling operations [12], but this is beyond our
topic here.

Overcomplete representation is another important
property in the primary visual cortex. Despite our recog-
nition of its usefulness in early vision, we have not fully
understood its role in forming a saliency map [7]. Infor-
mation processing in V1 provides input to all subsequent
cortical areas, to fully represent a complex scene and
satisfy different needs. To describe all features including
structure and details at different levels, the amount of
basis vectors should be large. Several coding models con-
sidering overcomplete basis sets have been proposed, such
as TICA and OPCICA (Overcomplete Pairwise Cumu-
lant based methods for Independent Component Analy-
sis). OPCICA is successfully used in object recognition.
Recently, some saliency detection models using matrix
decomposition learned overcomplete bases from color
images [6]. Although it uses sparse coding and overcom-
plete bases, it is less biologically motivated and more
mathematically implemented.

Results and discussion

To investigate the influences of different coding factors
on bottom-up attention, we compared the results of two
kinds of datasets: synthetic images widely used in cog-
nitive psychological experiments on visual attention and
natural images. The experimental environment was simu-
lated in MATLAB that ran under Intel Core i5 2.66 GHz
CPU. The details of the training and testing processes are
summarized as follows:

Training
1. obtaine 50,000 image patches of 16x 16 from the
training dataset and preprocess them with whitening
and dimension reduction.
2. initialize the basis set to be a random matrix and
orthogonalize it.
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3. update the basis set according to the rule defined in
the PCICA algorithm.

In training, we used the grey image dataset?, which is the
standard dataset used in ICA and in sparse coding models
to learn an overcomplete basis set by the PCICA.

Testing

1. Using the learnt overcomplete topological bases by
the PCICA, we extracted primitive features by
convolving an input image with each filter.

2. The outputs in step (1) were then rectified by the
sigmoid and the absolute function.

3. The primitive features, when in step (2), were pooled
and refined to form invariant features descriptors. As
the PCICA algorithm has organized the bases into a
topographic array, pooling is defined in a
neighbourhood by subsampling. That is, horizontal
and vertical intervals between two
neighbourhoods/pools are constants. The pooling in
this study was implemented by the square root of the
sum of the squares of those units belonging to the
same pool. Refinement was implemented by
computing the similarity (according to formula 6)
between pairs of filter responses and then selecting
the ones whose similarity exceeded the threshold.
For the model without invariant feature coding, this
pooling was not needed because the conspicuous
maps were obtained by directly performing DoG
suppression on the feature maps from
step (2).

4. For the model with invariant feature coding, the
conspicuous map was obtained by performing
surround inhibition on each invariant feature map
when in step (3). The surround inhibition was
implemented as a convolution of the invariant
feature with the DoG (formula 9).
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5. The conspicuous maps were combined into a final
saliency map by iteration strategy (formula 11).
When the number of conspicuous maps was large,
we used the K-means algorithm to organise the maps
into N clusters, iterated each cluster centre according
to formula (11), and then obtained the saliency map
by summing up the N iterated results.

We also build a fully connected network (Figure 2) and
a randomly connected network (Figure 3) for a more
detailed comparison.

The optimal network structure for invariant representation
For experiments in this part, we learned 196 filters of size
16x16 by PCICA. The filter size was changed to 8x8,
12x12 and 20x20 when we compared the models per-
formances under varying layer 1 RF sizes. Then we got
25 invariant features by pooling filters in 5x5 neighbor-
hoods over the 14.x 14 topographic array(composed of 196
filters). Two neighborhoods are overlapped by two filters
both horizontally and vertically. The neighborhood size
was changed to 3x3 and 7x7 when we compared the
models performances under varying layer 2 RF sizes.

To make our results comparable to those of the model
by Itti and Koch (Saliency Tool), we only selected an
orientation channel for Salience Tool to form saliency
maps. Salience Tool used the default parameters setting
of 72 Gabor filters at 9 scales, 4 orientations(0°, 45°, 90°,
135°), and 2 phases(0°, 90°). It produces 24 feature maps
(6 centre-surround difference maps for each orientation
angle).

The first experiment is similar to the "visual search”
tasks designed by Treisman and Gelade [1]. According to
their results, one target among distractors with orthogo-
nal orientations easily pops out. The tasks become more
difficult if orientation noises are added to distracters [7].
We designed distractors with noises between [—30°, 30°]
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Figure 2 Diagram of the fully connected network. An image is first convolved with all filters in the first layer, the outputs of which are rectified by
the sigmoid and the absolute functions. Then, all the rectified outputs are pooled in the second layer to produce a single feature map, which is
subjected to the inhibition simulated by convolution with the DoG function. The final output is the saliency map.
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Figure 3 Diagram of the randomly connected network. An image is first convolved with each random group of filters in the first layer (the
number of filters in a group is fixed but which filters belong to a group are random), the outputs of which are rectified by the sigmoid and the
absolute functions. Then, in the second layer, the rectified outputs within each random group are pooled to produce a single feature map, which is
subjected to the inhibition simulated by the convolution with the DoG function. Feature maps from different random groups are combined to

to test the performances of different models under differ-
ent parameters. The results are shown in Figure 4.

We generated synthetic images as follows. Target posi-
tions and orientations were randomly determined. Dis-
tractors orientations were orthogonal to that of the tar-
get and were disturbed by orientation noises (in [—30°,
30°] with uniform probability). We generated 20 syn-
thetic images where the target’s position and orientation
was random in every image, and showed an example in
Figure 4(b). The correct detection rate is defined as the
ratio between the times that the maximal in a saliency
map refers to the target and the total experimental
times.

The fully connected network could not detect the target
in all the experimental conditions. The randomly con-
nected network performed better than the fully connected
network. The attention model without invariant features
coding could produce acceptable results when parameters
were tuned properly. The model with invariant features
coding performed best though it was also affected by
model parameters.

The first layer receptive field (RF) size is highly rele-
vant to the resolution of the image and to texture density.
For images with fine and close textures, a small RF size
is enough. For images with coarse contours or pieces, the
RF size should be larger. As seen in Figure 4, we tested
four layer 1 RF sizes, namely 8x8, 12x12, 16x16, and
20x20. As long as the size was greater than the inter-
val between the adjacent bars in Figure 4(b), it would not
significantly affect the performance. An RF size of 8x8

was too small, leading to relatively low detection rates.
The sizes greater than 16x16 did not produce substantial
changes in performance (Figure 4(c)).

We also tested three layer 2 RF sizes, namely 3x3,
5x5, and 7x7. Note that for the model without invari-
ant features, the layer 2 RF size is always 1. For the fully
connected network, this size is always the total number
of filters in layer 1. Thus, this comparison only works for
the model with invariant features and the randomly con-
nected network. For the former, the performance is not
affected in such a simple task (Figure 4(d)). However, in
the extreme condition, i.e., layer 2 RF size of 1x1 (which
is equivalent to the model without invariant features), the
correct detection rate drops when orientation noises lie
in the [—30°, 30°] range. However, when no orientation
noises are added (all distractors are in the same orien-
tation like Figure 4(a)), the correct detection rate of the
model without invariant features is the same as that of the
model with invariant features. This indicates the layer 2
RF size (the size of pools) influences robustness to noises.
For the randomly connected network, correct detection
rate rises with the layer 2 RF size.

The coefficient «, which adjusts suppression strength,
affects performance. Generally, a very small coefficient
cannot completely suppress responses to distractors, and
a very large one probably suppresses all responses includ-
ing those to the target. Both of these situations lead to low
detection rates (Figure 4(e)). However, a larger o results
in a better detection rate for the randomly connected
network.
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Figure 4 Saliency detection in visual search where stimuli differ in orientations. (a) a testing image without orientation noises; (b) an example
of testing images where orientation noises are in [—30°, 30°] with uniform probability. The target marked by red circles; (€) comparison of different
models namely the model with invariant features,the model without invariant features, a fully connected network and a randomly connected
network, on 20 testing images such as that in (b) when layer 1 RF size varies; (d) comparison when layer 2 RF size varies; () comparison when the
coefficient a which adjusts the suppression strength varies; (f) comparison when excitation bandwidth o varies. See the text for details .

Finally, we evaluated the influence of the excitation
bandwidth o,y and the inhibition bandwidth o}, in the
DoG used within the feature competition. For simplic-
ity, we kept the ratio ‘;‘:’: constant, and we only changed
Oex to three values: 1, 3, and 5. This change indicates
that o,y is one, three, and five times as large as the layer
1 RF size. For the model without invariant features, the
detection rate dropped with the increase of o.,. No sub-
stantial change was observed for both the model with
invariant features and the randomly connected network
(Figure 4(f)).

The second experiment involved a visual search task
in composite stimuli. As shown in Figure 5, the atten-
tion model with invariant features outperforms the model
without invariant features, fully connected and randomly
connected networks, and Itti’s Saliency Tool [4]. The
model with invariant features can detect salient objects
when parameters vary greatly, whereas the model with-
out invariant features cannot work. The results of our
model with several different parameters are shown in
Appendix 1. A detailed behavioural analysis for parameter
values is also presented.

We further tested the models’ performances in detec-
tion of global salient structures. As mentioned in the
Background section, the global saliency is defined by
Gestalt psychologists as whether a structure respects cer-
tain perceptual organisation rules such as proximity, good
continuity, and closure [16]. The s curve, an illusory con-
tour and a noisy version were taken as testing images.
Results are shown in Figure 6.

As indicated in Figure 6, objects as solid curves are per-
ceived clearly. When objects are illusory contours, the
attention model with invariant features coding can detect
continuous contours. As parameters vary within the range
mentioned in the figure caption, detection results are
always continuous contours, while the attention model
without invariant features coding detects discrete end
points. As parameters vary within the range mentioned
in the figure caption, detection results are always dis-
crete ends. When the object is a noisy s curve, differences
in saliency detection results between the two attention
models are greater. In the model with invariant coding,
segments forming the s curve can be detected and most
segments forming background can be suppressed. For the
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Figure 5 Saliency detection in composite stimuli. (a) source image; (b) saliency map of the attention model with invariant features coding.
When oy is 1.8% — 3% of the image size (the larger one between the image width and height),oi, is three to four times of oey, @ = 1.8, saliency
detection results are similar to (b); (€) saliency map of the attention model without invariant features coding, and parameters do not substantially
influence the result; (d) saliency map of Itti's attention model; (e) saliency map of a fully connected network; (f) saliency map of a randomly
connected network. The perceptual interpretation of human observers is reproduced only by our model with invariant features.

model without invariant coding, segments in the back-
ground are more salient than those in the s curve. Itti’s
Saliency Tool performed better than the attention model
without invariant features coding, but for the illusory
contour, it performed even worse. We give a detailed com-
parison and analysis for the fully connected network and

the randomly connected network on the illusory contour
in Appendix 2.

Our purpose in the next experiment was to test the
saliency detection performances on a collection of "real
images” under different SNRs(signal-to-noise ratios). We
constructed testing images from pairs of real images.

(a)

(b)

Figure 6 Detection of global salient structure. (a) source images; (b) saliency maps of the attention model with invariant features coding; (c)
saliency maps of the attention model without invariant features coding. Results are relatively insensitive to parameters. oey is 2% to 5% of the image
size (the larger one between the image width and height). o, is 4 to 10 times of oey, @ €[3,4]; (d) saliency map of Itti’'s attention model; (e) saliency
map of a fully connected network; (f) saliency map of a randomly connected network.
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Three fruits® were selected as the objects (Figure 7(g)-(i)),
and six natural texture images from the MIT Media Lab
texture database were selected as the background (three of
which are given in Figure 7(a)-(c)). The Canny edge detec-
tor was applied to each object and texture background to
yield edge images (Figure 7(d)-(f), (j)-(1)).

A testing image was constructed by inserting an object
edge image into the center 32x32 region in a 64x64
edge image of a texture (Figure 8(a)). An object con-
sists of approximately 30 segments, and a texture edge
image was undersampled at different scales to produce
the background patterns consisting of different numbers

Page 8 of 22

of segments. We kept the number of segments in the
objects fixed and changed the number of segments in the
background to obtain testing images with different SNRs.
Under each SNR, we estimated the correct detection rate
on 18 images (a combination of an object from 3 fruits
and a background from 6 texture patterns) to get statistical
results of saliency detection on these real images.

Given a testing image in which the object consists of m
edges, we defined a correct detection as the object edges
which account for not less than 70% the first m most
salient edges. It can be computed by a Bernoulli bino-
mial probability distribution that the random probability

(i) red onion; (j)-(I) edge images of (g)-(i).

Figure 7 Real images constructing objects and backgrounds. (a) brick; (b) terrain; (c) water; (d)-(f) edge images of (a)-(c); (g) pear; (h) banana;
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Figure 8 Saliency detection performances on real images under different SNRs (a) 3 examples of testing images. Up: the banana in terrain
background at the SNR 1:3, mid: the pear in brick background at the SNR 1:2.5, down:the red onion in water background at SNR of 1:3.5; (b) saliency
maps of the attention model with invariant coding; (€) without invariant coding; (d) saliency maps of the Saliency Tool. In a saliency map, the more
salient part is indicated by the brighter and whiter region; (e) plot of the correct detection rates versus SNRs. Larger RF size improves the
performance of the model with invariant coding, which coincides with findings in neuroscience.

is not higher than 0.016°. Several examples were shown
in Figure 8. It was a challenging task for the segments
along the object silhouettes were not uniformly spaced
and the segments in backgrounds were correlated (possi-
bly formed colinear or co-circular structures). The model
with invariant coding outperformed the model without
invariant coding at the same set of parameters. When the

RF size was tuned to be larger in the model without invari-
ant coding, it performed better. Saliency Tool failed in the
task. A quantitative comparison of the correct detection
rates versus SNRs was plotted in Figure 8(e).

From the plot, we can see that the correct detection
rate first slightly increases and then dramatically decreases
as the SNR decreases. This result can be explained in
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the following way. When the number of background seg-
ments is small, their saliency may surpass that of objects,
for the background segments are so sparse that they con-
trast strongly with surroundings. When the number of
background segments is large, their probabilities of form-
ing collinear or continual structures increase, leading to
many local maxima in saliency maps and thus disturbing
the detection of objects. In our experiments, the correct
detection rate reaches the maximum at the SNR of 1:3.

Why did the attention models differ in saliency detec-
tion? This could be caused by two factors. First, the sizes
of receptive fields are enlarged after pooling, so some dis-
crete segments or end points are easier to be perceived
as a whole. It has been reported that larger receptive
fields facilitate object search in complex scenes [23]. An
improvement in the performance of the model without
pooling (i.e. the model without invariant features) but
with a larger RF size also supports this factor.

Second, invariant coding makes smoothly varying stim-
uli evoke consistent responses, thereby enhancing the
contour and facilitating perception of a structure from a
cluttered background. This phenomenon is known as the
contour completion, which is achieved since neurons with
similar preferred orientations enhance each other when
they are collinear (smoothly varying in orientations), and
suppress each other when they are nearly orthogonal [15].
This kind of interaction is also reported in [9] as neuronal
responses that are modulated by the presence of stimuli
outside of classical receptive fields.

Effects of overcomplete representation on saliency
detection
In this section, we used natural image datasets to test the
effects of overcomplete representation on saliency detec-
tion. The experiments include two parts. In the first part,
we learnt filters from the same set of images as used in the
last section. The numbers of filters are set to be 100, 196,
392, and 576, respectively, and correspondingly 16, 25, 50,
and 64 invariant feature descriptors by pooling the filters
are selected. The testing dataset is collected by Bruce et al.
[24], which includes 120 color images and eye move-
ments from 20 observers when they view these images.
The human eye tracking data can be used as a physio-
logical basis to compare with the saliency maps obtained
from attention models. In the second part, we selected
50 images from the Weizmann dataset [25] and collected
eye tracking data of 15 viewers on these images. All these
images show targets in cluttered texture backgrounds. 30
images out of the 50 images were used for training filters,
and the 20 images left were used for testing.

Each image was scaled to 341x256 pixels. In learning
by the PCICA, we chose, for example, 16 neighbour-
hoods (pools) of 5x5 from the 10x 10 topographic array
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(composed of 100 filters) where the size of each filter is
16x16. Two neighbourhoods were overlapped by two fil-
ters both horizontally and vertically. Torus grid was used,
that is, next to the nethermost filter is the correspond-
ing uppermost filter, and next to the rightmost filter is the
corresponding leftmost filter. In testing, we used the 16
sets/pools of filters (each set was composed of 5x5 fil-
ters) to extract features from the 341x256 images. Next,
we pooled the 25 filtered results in each set into a sepa-
rate feature map. After performing surround suppression
within each feature map, 16 conspicuous maps with a
size of 341x256 were obtained. Finally, a single 341 x256
saliency map was formed by combining 16 conspicuous
maps.

The model of Itti and Koch (Saliency Tool) uses Gaus-
sian pyramids with 9 scales and 4 orientations. At each
orientation angle, this model pools primitive features
obtained from Gabor filters of different phases. In this
experiment, we set the number of phases at 4 for com-
putational efficiency and also because this value does not
substantially influence the results. To make the results of
the two models comparable, we only selected the inten-
sity and orientation channel for the Saliency Tool to form
saliency maps. Altogether, Saliency Tool uses 144 filters
and combines 30 feature maps (4 orientation features, 1
intensity feature, and 6 centre-surround difference maps
for each type of feature; see [26] for details). This setting
is close to that of our model with 196 filtersd and 25 fea-
ture maps to be combined. Several examples are given in
Figure 9.

We computed the receiver operator curve area (ROC
area), a common measure in signal detection [27], to
compare the performances of different models with obser-
vations from humans, and list the ROC scores in Table 1.
The larger score means better consistency with human
observers. Considering that the filters and invariant fea-
ture descriptors are learned from gray images and no color
information is encoded, the attention models based on
these can detect saliency mainly caused by intensities and
orientations. Therefore, in the Bruce dataset, we trans-
formed the color images into gray images and removed
the images whose saliency was only caused by color con-
trasts. The remaining 82 images were used for testing. In
the Weizmann dataset, all images are gray images.

As shown in Table 1, the saliency detection accuracy
improves as the number of the basis set increases. This
may be explained by the fact that the more overcomplete
basis set describes features of images (namely frequencies,
orientations, and positions) more adequately [28]. It cov-
ers almost the whole frequency (orientation, phase) space
for natural images and encodes primitive features as well
as shape features.

In the Bruce dataset, when the number of a basis set
is too small, such as 100 bases pooled into 16 invariant
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background. All the filters are learned from the same training dataset.

Figure 9 Saliency maps of attention models with different numbers of bases. (a) source images; (b) human eye tracking; (c) saliency maps of
Itti's attention model; (d) saliency maps obtained by the attention model with 100 bases (16 feature maps); (e) with 392 bases (50 feature maps); (f)
with 576 bases (64 feature maps); (g) saliency maps of a fully connected network (392 bases, 1 feature map); (h) saliency maps of a randomly
connected network (392 bases, 50 feature maps). The attention models in this paper simulate bottom-up saliency detection. Thus, their results are
not always identical to the results of human eye tracking, which sometimes involves top-down attention. In the last row, our model with 576 filters
(64 invariant features) acts like a contour extractor that can suppress textures. It detects most contours of the target despite the strongly cluttered

feature descriptors, they cannot describe an image ade-
quately, resulting in great divergence from human detec-
tion. When the number of a basis set reaches 392 or 576,
the change of ROC scores is tiny. This indicates that a
392 basis set (two times overcomplete basis set) is near
saturation. The ROC score at this point is above that of
Saliency Tool, which indicates the superiority of overcom-
plete basis set. The performances of the randomly con-
nected network and the fully connected network are also
listed. The performances of these networks are worse than
our model, though the differences are not as significant as
those in synthetic images.

Table 1 ROC scores in different datasets

The possible reasons for the difference between the
results of synthetic and natural images can be analyzed
from two aspects. First, synthetic images(which are spe-
cially designed) and natural images have different struc-
tures. In Bruce dataset, a considerable number of images
have no uniformly distributed distractors and almost
no collinear or cocircular segments. Saliency detection
results for such images do not differ significantly in differ-
ent networks.

Second, our model with invariant features yields a
saliency map coding intensity and orientation, whereas
the fully and randomly connected networks produce

Basic number ROC Basic number ROC
(feature maps) (feature maps)
100(16) 05722 196(25) 0.7104
our 196(25) 0.6427 our
Bruce model 392(50) 0.6830 Weizmann model 256(36) 0.7282
data 576(64) 0.6864 data
Sal Tool 144(30) 0.6717 Sal Tool 144(30) 0.6233
ful net 392(1) 0.5913 ful net 256(1) 04947
rand net 392(50) 0.5965 rand net 256(36) 0.5011
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saliency maps only coding intensity. For the synthetic
images used in our experiments, the intensity cannot dif-
ferentiate targets from distractors\noises (as their inten-
sities are equal). Without orientation information, the
targets cannot pop out. For most natural images from
the Bruce dataset, the intensity contrast alone contributes
greatly to the final saliency maps. Therefore, saliency
detection results on the Bruce dataset do not differ sub-
stantially between our model and the fully\ randomly
connected networks.

However, our model with invariant features does show
distinctions in certain kinds of natural images: the images
where orientation plays a major role in saliency detection
and the images where targets are in cluttered texture.

An example showing orientation plays a major role in
saliency detection is given in Figure 10(al)-(m1). In the
fully connected and randomly connected network, only
the vertical line (marked by a red box) is detected as
salient. In our model, the triangle sign (marked by a blue
box) is also detected as salient, which is more consis-
tent with human perception. The vertical line is salient
because of the strong intensity contrast between its left
and right regions, whereas the orientation contrast con-
tributes more than intensity to the saliency of the triangle
sign.

An example showing the pop-out of targets in cluttered
texture is given in Figure 10(a2)-(m2). In the fully con-
nected and randomly connected network, a pedestrian
(marked by a red box) in a cluttered background can-
not pop out. In our model, the pedestrian is detected as
salient, which is more consistent with human perception.

As to the Bruce dataset that is used in our experiments,
the images where our model with invariant features shows
distinctions are few. Thus the ROC scores have no sub-
stantial differences among different networks.

we selected 50 images from the Weizemman dataset.
All the selected images show targets in backgrounds
with cluttered texture. 30 images were used for train-
ing filters, and the 20 images left were used for testing.
The filters learned from this training set was given in
Figure 11(b). The performance of different networks on
this dataset were listed in Table 1. We can observe diver-
gences between our model and other networks. This
experiment shows that our model with invariant coding
can fully exhibit its superiority, given special datasets and
filters learnt from task-dependent images.

Relations between our model and Itti’s Saliency Tool

Our model uses orientation and intensity feature to pro-
duce saliency maps and calculates within feature com-
petition and combination in a similar manner to that of
Saliency Tool. From this point of view, our model may
be mistaken as a special case of Itti and Koch’s model
(when constrained to use only orientation information).
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However, the two models are distinct from one another,
as mainly manifested in the following aspects:

First, the model by Itti and Koch constructs Gabor fil-
ters in 4 orientations and 9 scales to extract primitive
features, whereas ours learns an overcomplete set of fil-
ters from training images. Thus, Saliency Tool works in an
unsupervised way, while our model can be extended to a
supervised one. Though the learning process is more com-
plicated and time consuming than direct construction, it
greatly improves performance for it provides a specialised
model (the filters are learned by providing the system
with examples of targets to be detected). Such works
[29,30] have been reported to improve saliency detection
by learning feature descriptors and by training classifiers
with positive and negative samples.

Second, the orientation features obtained by the two
models are different. At each orientation angle (0°, 45°, 90°,
135°), Saliency Tool pools Gabor filtering results at differ-
ent phases by a sum of the absolutes (}_ ||). The default is
pooling a pair of Gabor responses with orthogonal phases.
In our model, filters in the same pool have similar orienta-
tions (smoothly changed) and different phases. Hence, our
model obtains orientation invariance aside from location
invariance. When the orientation of input data slightly
changes, the features do not change greatly. By contrast,
Saliency Tool is location invariant but not rotation invari-
ant. A small change in input orientation changes the
representation significantly. To test this point, we reused
the visual search task mentioned in Figure 4 and listed
the performances of the two models in Figure 12. When
all distractors were in the same orientation, the two mod-
els performed equally well. As the orientation noises in
the distractors increased (that is, the distractors increas-
ingly varied in orientations), the correct detection rate of
Saliency Tool greatly dropped, whereas the correct detec-
tion rate of our model did not change significantly. The
two models differ in terms of the robustness to minor
orientation variations in input. In Saliency Tool, the ori-
entation contrast of the target to distractors is likely to be
weakened or be entirely lost (the worst situation) when
variations among distractors increase. It is so sensitive to
this variation that the correct detection rate drops.

However, a feature descriptor designed to be insensitive
to great variations in input may be unfavourable especially
for object recognition.

Conclusion

To determine which factors in coding models affect
saliency detection, we construct a coding model satisfy-
ing neurobiological constraints to provide input to the
bottom-up attention model. The model is plausible in
neurobiology because it provides an overcomplete rep-
resentation for stimuli, obtains invariant features by a
hierarchical structure, and models feature competition
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(al) (b1) (cl) (d1)

12) (m2)

Figure 10 Two examples where our model shows distinctions. (a1) source image; (b1) the pooling result of the fully connected network, which
does not discriminate different orientations, but shows intensity differences. After the surround inhibition shown in (1), only the part with the
strongest intensity contrast is left in the saliency map (d1). (e1) The pooling result of one of the random groups in the randomly connected network,
which is similar to the case in the fully connected network; (f1) the surround inhibition performed on (e1); (g1) the final saliency map. (h1) and (i1)
two examples of pooling results in our model, which are specific to certain orientation angles; (j1) and (k1) corresponding surround inhibition; (11)
the final saliency map. (m1) human eye tracking. (a2) source image; (b2) the pooling result of the fully connected network, where the saliency of
the pedestrian is too weak to be discriminated from the cluttered background. After the surround inhibition shown in (€2), only the part with the
strongest intensity contrast is left in the final saliency map (d2). (e2) the pooling result of one of the random groups in the randomly connected
network, which is similar to the case in the fully connected network; (f2) the surround inhibition performed on (e2); (g2) the final saliency map. (h2)
and (i2) two examples of pooling results in our model, which are specific to certain orientation angles, and the saliency of the pedestrian is strong
enough to support the pop-out; (j2) and (k2) corresponding surround inhibition; (12) the final combined saliency map; (m2) human eye tracking.
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Figure 11 Overcomplete bases obtained by PCICA. A clear topography emerges from the two maps. Though both sets consist of Gabor-like
filters, filter patterns and distributions learned from different datasets appear to be different, particularly in their average length and frequency. (a)
the basis set that is used in most experiments (except the experiment on Weizmann dataset) . It is learned from natural images. An example
showing the filters in neighborhood slowly change their properties as marked within a red square; (b) the basis set that is learned from Weizmann
dataset. Some bases are similar to receptive fields of curvature-selective, end-inhibition, side-inhibition and texture-selective cells.

through nonclassic receptive field inhibition. We analyse
different network structures and parameters as well as the
underlying factors that influence performance.

More specifically, invariant coding improves robust-
ness to noises and distractors, and improves the ability
of detecting salient structures, such as colinear and co-
circular structures that satisfy some perceptual organiza-
tion rules. This phenomenon is also found in physiological
experiments [16]. We have also shown that overcom-
plete basis set encodes a rich repertoire of natural image
features, so it can improve saliency detection accuracy.

Given the state-of-the-art models by Itti and Koch, and
Zhaoping Li, our work provides a learning scheme that

can be easily extended to a supervised model. By learning
from examples of targets to be detected in a specific task,
the performance is expected to be improved. The detailed
behavioural analysis for parameters is of reference to a
construction of a good system.

In summary, our results suggest that hierarchical invari-
ant coding and overcomplete representation are general
principles in visual attention and possibly in other percep-
tual systems. In the future, we will extend our attention
model to work in a supervised method, involve mul-
tiscale techniques for adaptation to image resolutions,
and to include other features (like colour) into saliency
detection.
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Figure 12 Invariance to orientation. (a) an example of images
where orientation noises are in [—20°, 20°] with uniform probability;
(b) saliency map of our model for (a); (€) saliency map of Saliency
Tool for (a); (d) an example of images where orientation noises are in
[—30°, 30°] with uniform probability; (e) saliency map of our model
for (d); (f) saliency map of Saliency Tool for (d); (g) statistics of correct
detection rate vs. range of orientation noises |A@| in distractors (that
is, when the orientation of the target is 6;, the orientations of
distractors vary in [6; 4+ pi/2 — A8, 6; + pi/2 + A6)). For each | A6,
we test 20 randomly generated images. The target is marked by a red
circle. The results of Saliency Tool are got by only using orientation
information. Note that since orientation difference between the
target and distractors is pi/2, | A@| should not exceed 45°.

Methods

Before applying our model to synthetic or natural images
to yield saliency maps, we obtained a basis set by train-
ing whitened image patches according to the PCICA
algorithm. A brief summary of the training process was
given in “Results and discussion” section (refer to [22] for
details). A set of 392 overcomplete bases of 16 x 16 learned
from natural images was listed in Figure 11(a). In the pre-
processing, all the 16x 16 training patches were whitened.
That is

I« WI 1)

where [ is a matrix consisting of all patches. W is the
whitening matrix computed by

w=vuiv? @)

where U and V are the eigenvalue matrix and eigenvectors
from 11" = vuvT.
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The dimension of all patches was decreased from 256
to 196 by Principle Component Analysis. As the number
of bases is twice the dimension of a basis, it is designated
as two times overcomplete bases. The bases learned from
natural images show clear topography. Orientations, fre-
quencies, and locations of all the filters smoothly vary,
forming a globally and topographically ordered array.
Properties of filters in neighborhoods are similar.

The workflow of the testing process was described in
Figure 1. Next, we break down the testing process into
detailed subsections.

First layer - primitive features extraction

Given a set of overcomplete topological basis vectors {®;}
learned from natural images by the PCICA algorithm, we
compute their responses to an image /(x,y) by convolu-
tion

T

cDi
S =g
L

* 1(x,9) (3)

As each basis responds optimally to a specific frequency,
phase, and orientation, local primitive features similar to
simple cell responses are encoded by formula (3). Then SF;
is rectified by the absolute and sigmoid function to limit
its range between 0 and 1.

SF; < sigmoid(|SF;|) (4)

A similar rectification is implemented by the hyperbolic
tangent and absolute function in [12].

Second layer - invariant features representation

Invariant features are obtained by organizing the
responses of topological bases in the same neighbourhood
with the pooling operations. When extracting invariant
features from an input images, the neighborhood size
should be the same as that in learning topographic bases
by the PCICA. An example is denoted by a red box in
Figure 11. For the two times overcomplete bases men-
tioned above, we set the size of neighborhood to be 5x5
and two adjacent neighbourhoods overlap by two bases
in both rows and columns. In this way, invariant feature
descriptors €2; are obtained and each of them consists of
25 bases. Bases in the same descriptor correlate strongly,
while bases in different descriptors usually correlate
weakly.

The pooling cannot avoid some bases with strong dif-
ferences being grouped into the same neighborhood, so
a further refinement is needed. In every descriptor, each
basis ¢; is compared with the basis located at the center ¢,
by a similarity measure pg,¢., which is defined as a high-
order correlation between the features encoded by the two
bases

O = corr(SE?, SF2) ()
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We compute the high-order correlation as the method
given in TICA [21]

E(SF?SF?) — E(SF?)E(SF?)

where E() and D() denote the expection and variance
function, respectively. SF; was computed by using the for-
mula (3). In a descriptor, the bases correlating weakly to
the center basis, indicated by pg,s, under some thresh-
old, are removed. After this processing, the filters in the
same descriptor have similar properties. Figure 13 shows
nine examples of invariant feature descriptors obtained by
pooling and then refining with a correlation threshold of
0.1.

After the invariant feature descriptors are determined,
the responses SF;(x,y) of all filters ¢; belonging to the
same descriptor £2; are pooled

corr(SF?, SF?) = (6)

CExy) =H|Y S @y |, vieey (7)
[

where CFj(x,y) is the output of an invariant feature
descriptor. H() and and B are related to the pooling non-
linearity. A number of choices might be used to quantify
this nonlinearity. A popular one is H() as a square root
function and 8 = 2. It was reported that such a choice was
optimal for TICA and ISA [20,21].

As the orientations and frequencies of filters belong-
ing to the same descriptor vary smoothly, we can obtain
invariance by this pooling operation. It is biologically
plausible that a bank of receptive fields at nearby locations
on one level are organized to provide input to a recep-
tive field on a higher level [31,32]. By pooling, the size of
a receptive field on a high level is enlarged compared with
the one on a low level, and its robustness to changes is
increased as well. Simple cells and complex cells in the V1
area are an example. Receptive fields of simple cells over-
lap with each other, and those with similar properties pool
to form receptive fields of complex cells.
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Although topology is not indispensable for calculating
invariance, it is used in numerous models (TICA, tempo-
ral product network, IPSD, deep networks) to provide an
organised group for an upper layer to obtain invariance.
A popular alternative solution is to keep the unarranged
layout in a low layer and select the pooling group by some
similar metric defined on filter responses [33]. We inves-
tigate topographic filters in this paper because of their
biological plausibility (complex cells in V1 do take on a
topographic layout) and because the PCICA algorithm
is computationally efficient and insensitive to tuning
parameters.

Within feature competition

After an image is encoded by invariant feature descriptors,
the part that differs the most from its surroundings in a
feature map is selected as a candidate for salient objects.
The competition in this process is within a feature map.
To discriminate this competition from the inter map com-
petition afterwards, we refer to this competition result as
conspicuous maps. Motivated by neurobiology, we obtain
a conspicuous map by modelling suppression between
neurons with a DoG operator. This kind of suppression
is also called the nonclassic receptive field suppression
which was observed in the primary visual cortex of the
macaque monkey [34-36].

2t

_ 9c2+y2 1
e i 8)

DoG(x,y) = e i —
# o 20l

where o, and o;,;, indicate excitation and inhibition
bandwidth, respectively. In experiments, the value of o,
denotes the times of excitation bandwidth with respect
to the size of filters. For example, if 0., = 2, excitation
bandwidth is actually set to twice the size of filters. For
the model with invariant features, this kind of suppression
acts on the output of invariant feature descriptors(pooling
results), forming a conspicuous map

5j(x,9) = |CFj(x, y) — a(CF; ® w)(x,9) >0 )

ox,y) = |DoG (%, %) |0 (10)

1
1DoGl| L1

orientations and frequencies are similar but phases are different.

Figure 13 Some examples of invariant feature descriptors obtained by pooling and then refining. Each row lists a descriptor €; in which
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where « is a coefficient that adjusts the strength of sup-
pression, @ denotes convolution, ||>o remains unchanged
if inputting is positive, and outputs zero if inputting a
negative or a zero. ||DoG||1; is the L1 norm.

For the model without invariant features, this kind of
suppression directly acts on the rectified output of convo-
lutions between filters and an input image.

Combination strategy

Finally, conspicuous maps are integrated into a saliency
map by a certain combination strategy. The simplest com-
bination strategy is summing up all feature maps after
normalization (for example, normalize the data into the
same range). However, the strategy will encounter a severe
problem. The maximum in one of the feature maps is very
likely to be weakened by the maxima in other maps or
noises, or even completely lost. Several improved strate-
gies such as weighted sum are relatively more robust to
noises.

Zhaoping Li [7] proposed that a single max opera-
tor (over all neurons regardless of their preferred input
features) is more plausible than the sum in feature integra-
tion. Psychophysical tests of their V1 saliency hypothesis
on composite patterns are given in their report as an
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example to explain how the max operator works when
sum fails. While the max operator works well in some psy-
chophysical patterns, it is not highly robust to distractors
that are frequent in natural images. The max operation
is independently performed at each map location. The
saliency value of a distractor is probably a local maximal
in a feature map. If this local maximal is also the maximal
among all feature maps at this location, it will appear in
the saliency map. Thus, the max combination sometimes
yields a saliency map in which many locations are peaks,
as shown in Figure 14.

In this paper, we adopted a combination strategy of
iteration [37]. At each iteration, a given feature map s is
subjected to the following transformation

s < |s+5® DoG — Cippl>0 (11)

where DoG is a two-dimensional difference of the Gaus-
sian operator. C;,, is a constant inhibitory term and puts
a small bias to slowly suppressing areas where excitation
and inhibition balance almost exactly [37]. After a few
iterations, the initial maximum in a feature map will be
further strengthened, and the initial non-maxima will be
further suppressed. As a result, the differences between
the maximum and the non-maxima are amplified.

result of combination by max.

Figure 14 Comparison of different combination strategy. (a) source images; (b) result of our combination; (c) result of combination by sum; (d)
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When the number of maps to be combined is less
than 10, we iterate them as aforementioned and sum up
the results to obtain a saliency map. When the number
of maps is large, for example, 64 maps by pooling 576
overcomplete bases, a direct application of the iteration
strategy faces a severe signal-to-noise problem. Thus, we
provide a modified version.

We first compute a similarity matrix (defined in formula
(6)) for all conspicuous maps. Then, we use the K-means
algorithm (or any other spectral clustering method) to
organise the maps into N clusters according to the simi-
larity between pairs of them. Within each cluster, we pool
all maps into a single map (average pooling is used in the
experiments) and thus obtain N separate maps, one for
each cluster. Next, each N map is subjected to the iteration
described in formula (11). Finally, we obtain the saliency
map by summing up the N iterated results.

Computing the similarity matrix for conspicuous maps
may be time consuming, especially when a conspicuous
map is in high resolution. We solve this problem by sub-
sampling. We typically use N = 8, though our results are
not too sensitive to this parameter.

Several examples using the aforementioned combina-
tion strategy are given in Figure 14. For comparison, the
results of the max and the simple sum are provided as
well. Iteration produces much sparser maps where most of
the noisy activities are strongly suppressed. A simple sum
yields poor performance. Although the iteration performs
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best, it has the largest number of free parameters and
complex processes. The parameters depend on object size,
type of image, or on top-down influences.

Appendix

Appendix 1 Influences of different parameters in our model
The influences of parameters on saliency detection are rel-
evant to the type of stimuli and to the difficulty of the task.
We can see that the influences on a composite stimulus
(Figure 15) and on an illusory contour (Figure 16) are dif-
ferent. Generally speaking, for our model with invariant
features, the first layer RF size is highly relevant to the res-
olution of the image and to the texture density. The second
layer RF size does not substantially affect the performance.
The coefficient « that adjusts the suppression strength
cannot be too small (responses to distractors cannot be
completely suppressed) and too large (responses to targets
are also suppressed). The excitation bandwidth o, in the
DoG that is used in within the feature competition leads to
a degraded performance when it is smaller than the layer
1 RF size.

We test four layer 1 RF sizes, namely 8x8, 12x12,
16x16 and 20x20. Note that the learning time of the
PCICA algorithm increases with the increase of this size.
When the size is bigger than 20x 20, our machine will run
out of memory. As to the stimuli in Figure 17, 8x8 is too
small to detect the targets. The size of 20x20 produces

(e) )

(2

Figure 15 Influences of different parameters in our model with invariant features on a composite stimulus. (a) source image; (b) result of

optimized parameters; (€) smaller RF size in layer 1, which fails in detecting the target; (d) bigger RF size in layer 1, which produces a strange result;
(e) smaller RF size in layer 2, which does not influence the result significantly; (f) smaller coefficient & which produces less strong suppression, but
still detects the target as the most salient bars; (g) smaller excitation bandwidth oy, which fails in detecting the target.
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(b)

(e)

(®)

(d)
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Figure 16 Influences of different parameters in our model with invariant features on an illusory contour. (a) source image; (b) result of
optimized parameters; () smaller RF size in layer 1, which still detects the s contour but in a less continuous way (discrete points can be seen on the
s contour); (d) bigger RF size in layer 1, which produces a more continuous s curve and no obvious border effects; (e) smaller RF size in layer 2,
which does not influence the result significantly (discrete points can be seen on the s contour); (f) smaller coefficient & which produces less strong
suppression; (g) smaller excitation bandwidth oey, which detects a weak s contour.

a very strange result for the composite stimulus, while it
produces a better result for the illusory contour. When
the stimulus is a uniformly distributed texture like the two
examples, the layer 1 RF size should not be smaller than
the average intervals between adjacent elements.

We compare three layer 2 RF sizes, namely 3x3, 5x5
and 7x7. They do not affect the performance substan-
tially. Adjusting layer 2 RF size can be done in two ways.

One is to determine the size during the learning of
the topographic filters by the PCICA. Larger sizes make
the filters in each pool increasingly similar. If the size
is reduced to 1x1, then it is equivalent to sparse cod-
ing. In this way, a larger size is beneficial to invariant
representation.

The other is to determine the size when we extract fea-
tures using the learnt filters. Given a fixed set of learnt
topographic filters, we set (by default) the size of the sub-
regions to obtain invariant features to be the same as the
neighbourhood size in learning topographic filters by the
PCICA. The size of the subregions can also be adjusted
around that scale if necessary. In this way, the size of the
subregions to obtain invariant features is the actual sec-
ond layer RF size. Then, the subregions are subjected to
refinement (computing the nonlinear correlations and set-
ting a threshold to remove outliers according to equation
(6)). If the second layer RF size is larger, the possibility of
the RFs belonging to the same subregion but with strong
differences becomes larger. Therefore, after removing the



Qi et al. BMC Neuroscience 2012, 13:145
http://www.biomedcentral.com/1471-2202/13/145

Page 20 of 22

J —
L —
T
p———
C—
[
R —
L —
—— —
—_—
e
P —

fully connected network

.

(a) (b) ()

(d)

randomly connected network

(€9)

Our model

s

h)
)

@

Figure 17 Comparison of different networks on illusory contour. (a) source image; (b) pooling result of fully connected network, which is
almost a copy of input image since all features are reserved; (c) inhibition term of fully connected network which is almost uniform in the whole
space; (d) saliency map of fully connected network; (e) two examples of pooling results of randomly connected network; (f) inhibition terms of
randomly connected network corresponding to (e); (g) saliency map of randomly connected network; (h) four examples of pooling results of our
model which describes features in specific orientations ; (i) inhibition terms of our model corresponding to (h); (j) saliency map of our model.

RFs with strong differences, the quantity of the remaining
RFs is still close to that of the smaller second layer RF size.
For example, when the second layer RF size is 3x3, the
average number of RFs in a subregion/pooling group after
refinement is 8. When the second layer RF size is 5x5, the
average number of RFs in a subregion after refinement is

11. In this way, the second layer RF size does not influence
the final results substantially.

For the coefficient o, we use three values: @ €
{1.2,2.2,3.2}. Generally, a coefficient that is too small
cannot completely suppress the responses to distractors,
and a coefficient that is too large probably suppresses
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all responses including those to the target. Both of these
situations lead to relatively bad performance.

For the excitation bandwidth o,, and inhibition band-
width o;,;, we use three values 0., € {0.35,1,2}, and
keep the ratio ‘;’—"h = 4 just for simplicity. Note that the
value of o,y denotes the times of the excitation bandwidth
with respect to layer 1 RF size. No substantial change is
observed for the bigger ., but a degraded performance is
observed at 0., = 0.35, i.e. a excitation bandwidth smaller
than the layer 1 RF size.

Appendix 2 Comparison of different networks on illusory
contour image

A fully connected network produces (almost) blank
results. The pooling result is shown in Figure 17(b), which
preserves all information from the source image in a
blurred version. This result can be expected because the
filters in the first layer cover all orientations, phases, and
frequencies. The pooling output of all these filters pro-
duces almost an exact copy of the original one. Then, the
inhibition term (convolution of the pooling result with
DoG@) is shown in Figure 17(c), which is almost equally
strong in all locations of the image plane. The final output
(Figure 17(d)) is blank (zero) because all the information
is inhibited.

The performance of a randomly connected network is
similar to that of a fully connected network, for most of
the random groups perform like a miniature fully con-
nected network. This is also revealed from the network
structures (Figure 2 and 3). If the size of the random
group is equal to the size of the first layer, a randomly
connected network is equal to a fully connected network.
However, the probability does exist that most filters in
the same random group may have similar orientations.
Then, such groups can acquire invariant features, which
may account for the fact that a randomly connected net-
work sometimes performs better than a fully connected
network.

For comparison, we list several pooled results of convo-
lution in the same pool (Figure 17(h)) for our model with
invariant features as well as the inhibition term within
each pool (Figure 17(i)). The result by pooling convolu-
tions in the same pool describes features in a specific
orientation because filters in the same pool have similar
orientations. The inhibition performed in such pools is
completely different from that in fully connected networks
(Figure 17(c)) because of the properties of the DoG.

Endnotes

2http://research.ics.aalto.fi/ica/data/images/
Phttp://www.cs.unm.edu/~williams/saliency.html
¢Random probability computes CZO m’ff_ n)7(mi+n)3 where
m is the number of object segments and n is the number

of background segments
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dconsidering some filters are removed during refinement,

the actual number of filters used is less than 196
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