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Abstract

periods in brain development.

Background: lodine deficiency and iodine excess are both associated with adverse health consequences. lodine
deficiency during pregnancy leads to insufficient maternal thyroid hormone, subsequently causing irreversible adverse
effects on the neurological and cognitive functions of the offspring. The results of our previous epidemiological study
suggested that mild iodine excess might increase the prevalence of subclinical hypothyroidism. In the present study,
female Wistar rats maintained on low-iodine grain were randomly assigned to three groups based on iodated water
concentration: low iodine (LI, 1.2 ug/d), normal iodine (NI, 5-6 pg/d), and 3-fold high iodine (3HI, 15-16 ug/d). The
present study investigated whether higher-than-normal iodine intake (3HI) by rats from before pregnancy until
breastfeeding affects the postnatal (PN) neurodevelopment (PN7 and PN45) of their offspring during particularly sensitive

Results: After 12 weeks of treatment (before pregnancy), iodine concentrations in urine and thyroid tissue and circulating
thyroxine of adult females correlated with iodine intake. Brain-derived neurotrophic factor (BDNF) expression in the
hippocampi of pups on PN7 and PN45 was decreased in 3HI group compared to the NI controls (P < 0.05, all) On PN7

and PN45, the BDNF levels of the 3HI pups were 83.5% and 88.8%, respectively, that of the NI pups. In addition, the 3HI
group had a higher neuroendocrine-specific protein A (NSP-A) level than the NI controls on PN7 (P < 0.05). NSP-A levels of
the 3HI pups were 117.0% that of the NI pups. No significant difference was observed in the expressions of c-Fos or c-Jun
in the hippocampal CA1 region of the 3HI group compared to the controls (P > 0.05). Results from the Morris water maze
test revealed that pups of the 3HI group had mild learning and spatial memory deficits.

Conclusions: The neurodevelopmental and cognitive deficits of the 3HI pups were mild and temporary, likely related to

the changes in hippocampal protein expressions of BDNF and NSP-A.
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Background

Iodine is essential for the synthesis of thyroid hormone,
including during pregnancy. Maternal thyroid hormones
have essential roles in foetal brain development, regulat-
ing both morphological and biochemical changes before
the onset of foetal thyroid function [1,2]. Moderate and
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severe iodine deficiency during pregnancy leads to insuf-
ficient maternal thyroid hormone, subsequently causing
irreversible adverse effects on the neurological and cog-
nitive functions of the offspring [3-5]. In China the Uni-
versal Salt Iodization (USI) policy was implemented in
1996 and since then the average resident’s iodine status
was in excess for three years and more than adequate
for six years. Previously, we conducted a five-year fol-
low-up study from 1999 to 2004 to evaluate the effect of
different iodine intake on thyroid diseases. We found
that more than adequate (median urinary iodine [MUI]
243 pg/L) and iodine excess (MUI 651 pg/L) could
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increase the prevalence of subclinical hypothyroidism
[6]. However whether more than adequate and excessive
iodine intake can affect the neurodevelopment of the
offspring has not been investigated.

The genes c-Fos and c-Jun are essential for spatial
learning and memory consolidation in rats, and
hypothyroidism due to iodine deficiency is associated
with reduced expressions of c-Fos and c-Jun in the rat
hippocampal CA1 region [7-9]. Maternal hypothyroidism
affects the expression of foetal and neonatal brain-
derived neurotrophic factor (BDNF) [10,11] and
neuroendocrine-specific protein (NSP)-A [12], both of
which are important mediators of thyroid hormone and
have essential roles in brain development.

In our present study, female Wistar rats were main-
tained on low-iodine grain and randomly assigned to
three groups based on the iodated water concentration:
low iodine (LI), normal iodine (NI), and 3-fold high iod-
ine (3HI) groups. Furthermore we explored whether ma-
ternal iodine excess in rats could lead to changes in
neurological function in offspring.

Results

Urinary and thyroidal iodine content

Urine iodine concentrations of the adult female rats par-
alleled their iodine intake; urine and tissue iodine con-
centrations increased gradually with increasing iodine
intake. In the low iodine (LI) group, urinary iodine was
only 20.27% that of the normal iodine (NI) group, and
the thyroidal iodine was 15.37% that of the NI group. At
the same time, the 3-fold iodine (3HI) group had signifi-
cantly elevated concentrations of iodine in urine and
thyroid tissue, which was 307.16% and 141.92%, respect-
ively, that of the NI group (P < 0.05, all; Table 1).

Maternal and pup thyroid hormone

Maternal thyroid hormone: After 12 weeks of treatment
(pre-pregnancy), total thyroxine (TT,) and free thyrox-
ine (FT,4) concentrations in the sera of the adult females
were significantly lower in the LI group compared with
those in the NI (P<0.05, all). TT, and FT4 levels in the
maternal serum were significantly higher in the 3HI
group than those in NI control group (P< 0.05, all). On

Table 1 lodine concentration in thyroid tissue and urine
of pre-pregnant females after 12 weeks of treatment

lodine concentration (pg/L)

Urine Thyroid tissue
L 3748+2589 * 77.78+33.19 %
NI 18490 +23.27 506.05 + 39.62
3HI 56793 +69.84 * 71820+33.19 *

Values are expressed as the mean +SEM (n =6 for each group). *P < 0.05
compared with normal iodine control group.
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gestational (G) day 17, TT, and FT, concentrations in
sera of the adult females remained significantly lower in
the LI group compared with those in the NI (P<0.05,
all), while the 3HI group still exhibited significantly
higher circulating TT, level compared with the control
group (P < 0.05). However, on G17 the level of FT, was a
increasing trend, however no significant difference in
FT, concentration between the NI and 3HI groups.
After 12 weeks of treatment (pre-pregnancy) and on
G17, thyroid stimulating hormone (TSH) concentrations
were significantly higher in the LI group compared with
the NI (P <0.05, all), while there were descending trends,
although no significant changes were found in the TSH
levels after 12 weeks of treatment (pre-pregnancy) and
on G17 in the 3HI rats compared with these levels in
the NI (P> 0.05; Table 2).

Pup thyroid hormone: On postnatal (PN) day 7 (PN7)
and day 45 (PN45), the sera of pups in the LI group had
significantly higher TSH levels, and lower TT, and FT,
levels, than those in the NI group (P<0.05, all). On
PN7, pups from the 3HI group had a significantly higher
serum TSH level compared with NI pups (P< 0.05).
However, there was no significant difference between
the 3HI and NI groups in TT4 and FT, levels. On PN45
there was no significant difference in any of the serum
thyroid hormone levels between pups of the 3HI and NI
groups (P>0.05, all; Table 3). This indicated that the
thyroid dysfunction of the pups from the 3HI group
could be rectified by PN45.

Effect of 3HI on the protein expressions of c-Fos and c-
Jun in the CA1 area of hippocampus

Photomicrographs of the immunohistochemistry-stained
hippocampal tissues from PN7 pups showed positive ex-
pression of c-Fos and c-Jun in area CA1 in all treatment
groups (Figure 1A-F). The IOD values of c-Fos and
c-Jun in CAl area were significantly decreased in the
pups of the LI group compared with control pups
(P<0.05). However, there was no significant difference
in c-Fos and c-Jun expressions between the 3HI and NI
groups (P >0.05). On PN45, the expression of c-Fos and
c-Jun in the LI group was also the lowest among the
three groups (P < 0.05). There was no significant differ-
ence in the expressions of c-Fos and c¢-Jun in CA1 re-
gion of hippocampus between the 3HI pups and dams of
the NI group (P > 0.05).

Effect of 3HI on BDNF and NSP-A expression in the
hippocampus

On PN7 and PN45, BDNF protein expression levels were
significantly lower in both the LI and 3HI pups com-
pared with the NI controls. Specifically, on PN7 the
BDNF levels in the pups of the LI group were 58.84%
that of the NI (P<0.01) , and the BDNF levels of the
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Table 2 Maternal thyroid hormone levels of the three treatment groups during pre-pregnancy and G17

12 weeks of treatment (pre-pregnancy) G17
TSH (mIU/L) TT,4 (ng/dL) FT4 (pmol/L) TSH (mlIU/L) TT, (pg/dL) FT4 (pmol/L)
Ll 1.081+0.27 * 1.15+£0.15 % 1130+0.70 * 0.120+0.04 * 1.0+£0*° 951+031*
NI 0.063+£0.02 3.73+£041 25.10+£0.89 0.034 £.000 266+ 041 2430£2.77
3HI 0.029+0.01 552+095 % 2923062 * 0.023+0.01 395+038 % 2700£334

Values are expressed as mean + SEM; n =6 for each group. *P < 0.05 compared with the NI control on the same day; *The sensitivity of the chemiluminescence

immunoassay for TT, was 1.0 pg/dL.

pups in the 3HI group were 83.5% that of the NI
(P<0.05). On PN45, the BDNF levels in the pups of the
LI group were 59.78% that of the NI (P< 0.01), and the
BDNEF levels of the pups in the 3HI group were 88.8%
that of the NI (P < 0.05; Figure 2A and C).

On the other hand, on PN7 the expression of NSP-A
was higher in the LI and 3HI pups when compared with
the NI controls: The levels of NSP-A of the LI and 3HI
pups were 136.7% and 117.0%, respectively, that of the
NI pups (P< 0.01 and P < 0.05, respectively). NSP-A pro-
tein expression levels were significantly higher in the LI
pups compared with the NI controls on PN45. The
levels of NSP-A of the LI pups were 123.6% that of the
NI pups (P < 0.05). However, no significant differences in
the NSP-A levels were observed between the 3HI dams
and NI dams on PN45 (P > 0.05; Figure 2B and D).

Morris water maze (MWM) test

To evaluate whether various levels of iodine intake dur-
ing gestation could cause cognitive and behavioral altera-
tions in offspring, the pups underwent the MWM test on
PN40-44. The time to reach the hidden platform (escape
latency times) of all treatment groups became shorter as
the number of training trials increased. However, the es-
cape latencies were significantly longer for pups in the LI
group compared with the NI group. Interestingly, our
data showed that the 3HI pups took more time than the
controls to learn the spatial cues required to find the hid-
den platform for all 5 days of testing, and there was a
statistical difference when compared with the NI control
group on the third day (P < 0.05; Figure 3).

Discussion

Much recent attention has focused on elucidating the
effects of iodine deficiency on neurodevelopmental im-
pairment [13,14]. However, the effects of iodine excess

should not be overlooked. We investigated whether and
how a 3-fold increase in the physiological dose of iodine
in rat would affect brain development of their offspring.
The rat brain at PN7 is considered developmentally
equivalent to the human brain at birth [15]. Rat brain
development at PN21 approximates the late toddler
stage of humans, and PN45 equates to the teenager stage
[16]. We selected PN7 and PN45 as two crucial time
points in the brain development of the rat to explore the
effect of maternal excessive iodine intake on the neuro-
development and cognitive function in their offspring.
Our results show for the first time that there were
changes in BDNF and NSP-A expression and neurodeve-
lopmental impairment in rat pups whose mothers had a
3-fold higher-than-normal intake of iodine prior to preg-
nancy and throughout gestation and breastfeeding.

Iodine intake levels that are either lower or higher
than the recommended range are associated with an in-
crease in the incidence of thyroid disease in China [6].
Both thyroid hormone deficiency and excess have detri-
mental effects on the expression of neuronal proteins
during neurodevelopmental stages [17,18].

Iodine deficiency is the most common cause of
hypothyroidism. The results of some studies regarding ex-
cess iodine suggested that high iodine intake was asso-
ciated with increased incidence of hypothyroidism [19,20],
while others found that it led to hyperthyroidism [21,22].
These different results may be related to the duration of
high iodine exposure. The incidence of hyperthyroidism
after the initiation of the Universal Salt Iodization (USI)
program began to rise at about 6 months, peaked at
1-3 years and returned to the baseline within 3—-10 years
[23-25]. Iodine-induced thyrotoxicosis lasting the first few
years after the implementation of iodine supplementation
was reported in Lesotho [26] and Poland [27]. However
our epidemiological study demonstrated that there was no

Table 3 Hormone levels in offspring of the three treatment groups on PN7 and PN45

PN7 PN45
TSH (mlU/L) TT4 (pg/dL) FT4 (pmol/L) TSH (mIU/L) TT4 (pg/dL) FT4 (pmol/L)
Ll 0.157+0.03 * 148+099 * 771024 * 0.320+0.06 * 284+032* 23.62+1.25%
NI 0.079£001 244+0.10 1035+0.34 0.061£0.01 486+061 3468 +3.01
3HI 0.142+0.02 * 245+0.18 9.69+0.32 0.080+0.02 503+053 3380187

Values are expressed as mean = SEM; n=6 for each group. *P < 0.05 compared with NI control on the same day.
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Figure 1 Expression of c-Fos and c-Jun in the hippocampal CA1 area of pups on PN7 and PN45. Upper three photomicrographs (A-C)
show the expression of c-Fos in the CAT of the LI (A), NI (B), and 3HI (C) groups. Lower three photomicrographs (D-F) show the expression of
c-Jun in the CA1 of the LI (D), NI (E), and 3HI (F) groups. G and H represent the 10D values of c-Fos and c-Jun expressions in CAT on PN7 and
PN45, respectively. Data are expressed as the mean + SEM (n =6, for each group). * P <0.05 compared with the NI control group on the

H oL
14 H NI
§3HI
~12
o
%10
Q
58
©
>
Qs
e
-
g4
i
92

PN7
Postnatal age (day)

PN45

difference in either the prevalence or the incidence of
hyperthyroidism among mildly deficient, more than ad-
equate, and excessive iodine intake areas (MUI 84, 243,
and 651 pg/L, respectively). We found that more than ad-
equate and excessive iodine intake could increase the
prevalence of subclinical hypothyroidism [6]. The USI pol-
icy had been implemented for 3 to 8 years in China, since
1996, when we conducted the epidemiological study from
1999 to 2004. Therefore we did not obtain epidemiological
data for the early stage of iodine supplementation.

In the present animal study, after 12 weeks of treat-
ment (pre-pregnancy), the serum TT, and FT, levels
were significantly higher in the adult female rats of the
3HI group compared with those of the NI group. On
G17, the TT, concentration of the adult females
remained the higher level in the 3HI group compared
with that of the NI. Although no significant changes
were found in the TSH levels on pre-pregnancy and G17
in the 3HI rats compared with those of the NI, there
were descending trends in the 3HI group.

Before the onset of foetal thyroid function in both
humans (10-12 weeks gestation) and rats (G17), early
foetal brain development is completely dependent on
maternal thyroxine (T,) supply [28]. Even after the foetal
thyroid has begun to secrete hormone, as much as
17.5% of foetal T, derives from transplacental transfer
[29]. Recent studies have reported that excess thyroid
hormone could impair foetal brain development and
affect the neurological outcome of rat offspring [30,31].
Excessive iodine intake has been shown to inhibit foetal
thyroid function and lead to iodine-induced neonatal
hypothyroidism in Asian populations [32]. Our previous
study [33] found that excessive iodine intake increased
the risk of subclinical hypothyroidism in offspring. Fur-
thermore, excessive iodine content from breast milk
caused subclinical hypothyroidism in preterm infants
[34]. These studies were consistent with our finding in
the present study that maternal iodine excess caused
subclinical hypothyroidism of rat pups on PN7, although
the thyroid hormone levels of pups in the 3HI group
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Figure 2 Protein expression levels of BDNF and NSP-A in the pup hippocampus on PN7 and PN45. A and B: protein levels determined via
Western blot. C and D: Ratios of NSP-A/B-actin and BDNF/B-actin immunoreactive densities were determined for each group. The expression of
the two proteins was normalized to 3-actin. The height of each bar represents the mean + SEM (n=6 for each group). * P <0.05 compared with
the NI group on the same day; ¥ P <001 compared with the NI group on the same day.
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were within the normal range on PN45. Our results
indicated that maternal thyroid hormone disruption dur-
ing sensitive periods of brain development caused by
mildly maternal iodine excess could lead to thyroid dys-
function of pups and cause neurodevelopmental defects
in offspring.

—e—LI
—a— NI

Escape Latency(s)

1 2 3 4 5
Tramming day
Figure 3 Performance of pups in the Morris water maze. Data

are expressed as the mean + SEM (n=10 for each group). * P <0.05
compared with the NI group on the same day; * P <0.01 compared

with the NI group on the same day.

The proteins c-Fos and c-Jun in the nuclei of neurons
are involved in neuroplastic mechanisms and neuronal
differentiation, and also have important roles in memory
formation and consolidation [8,35]. In our study, c-Fos
and c-Jun expression in the hippocampal CA1l area of
rat pups was not significantly affected by the 3-fold high
iodine intake of their mothers during gestation. It is pos-
sible that compensatory mechanisms restored c-Fos and
c-Jun to normal levels in spite of maternal thyroid dys-
function. Another possibility is that c-Fos and c-Jun
were not involved in the neurodevelopmental impair-
ment of pups from the 3HI group.

BDNE, a neurotrophin protein, has significant influence
on crucial processes of brain development, including
neurogenesis, neuronal differentiation, synaptogenesis,
memory formation, and consolidation [36-39]. Previous
reports have documented that maternal thyroid dysfunc-
tion could affect the expression of BDNF and cause
neurological defects in neonates [40] and adult rats [11].
Our previous studies [10,41] reported that maternal sub-
clinical hypothyroidism decreased BDNF expression in rat
pup hippocampi and impaired spatial learning; pups
required more time during the Morris water maze test to
find the hidden platform, compared with pups from NI
mothers. The present study found that BDNF protein
levels were decreased in the hippocampi of the pups from
both the 3HI and LI mothers. On PN45, the BDNF ex-
pression in the 3HI pups remained lower than control
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pups, although circulating levels of thyroid hormone had
fully recovered. Our study indicated that a persistently
lower BDNF level may contribute to the adverse effect of
3HI on the developing brain. However, the impairment
was mild compared with hypothyroidism induced by iod-
ine deficiency.

NSP-A is known to be an important mediator of thy-
roid hormone effects during brain development and is
involved in neuronal differentiation and axonal guidance
[42]. Dowling et al. [12,43] showed that the expression
of NSP-A was regulated by thyroid hormone, and the
expression of NSP-A was selectively affected by maternal
hypothyroidism in the proliferative zone of the fetal rat
brain cortex. Our data also found that the expression of
NSP-A in the hippocampus on PN7 was affected by
mildly maternal excessive iodine intake. The abnormal
expression of NSP-A in the neonatal brain appears to be
related to the neurodevelopmental impairment in the
pups of the 3HI group, but the impairment was less se-
vere than pups in the LI group.

In this study, spatial learning ability and memory of
the rat pups were assessed using the MWM test on
PN40-44. Pups in the LI group required more time to
find the hidden platform, compared with pups from NI
mothers. The severe impairment of spatial and learning
ability was associated with the thyroid dysfunction and
abnormal levels of proteins related to neurodevelop-
ment, which were not reversed by PN45 in LI group,
and the neurodevelopmental impairment thus appeared
to be permanent. The mean escape latency of 3HI pups
was longer than for the NI control pups, and the differ-
ence was significant on the third day (PN42; P<0.05).
Our results suggested that the offspring in the 3HI
group may have had a mildly impaired learning capacity,
which could be associated with a decrease in BDNF and
an increase in NSP-A levels. The mild spatial learning
and memory impairment was temporary, which was
consistent with the recovery of NSP-A expression on
PN45, and the long-term effects of mildly maternal ex-
cessive iodine intake on neurodevelopment and cogni-
tive function need to be investigated in our future study.

Conclusions

In summary, this study found that both low and high
levels of iodine intake by rats could affect the neuro-
logical development of offspring. Reduced the expression
of BDNF and enhanced that of NSP-A during hippocam-
pal development of the offspring might be related with
the impaired cognitive functions. However the impair-
ment induced by maternal 3-fold high iodine intake was
mild and temporary, which suggested that careful con-
trol of maternal iodine intake level is important to pre-
vent neurodevelopmental defects in offspring.
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Methods

Animals

Specific Pathogen-Free (SPF) female Wistar rats (n =60)
weighing 80-120 g were obtained from HFK Bioscience
Laboratory Animal (Beijing, China). The Animal Re-
search Committee of China Medical University approved
this study. All experiments and procedures were carried
out in accordance with the Guide for the Care and Use
of Laboratory Animals mandated by the National Insti-
tutes of Health. Rats were housed under SPF conditions
at 24+ 2°C under automatic 12- h light and 12- h dark
cycles.

Animals were randomly assigned to one of three treat-
ment groups (n =20, each): LI, NI, and 3HI. All groups
were administered a low iodine diet (60 pg iodine per kg
of feed, or 1.2 pg iodine in 20 g of feed per rat per day)
of corn (73%), millet (20%), and soybean (7%) obtained
from an area that is severely iodine-deficient (Hebei,
China). Other chemical and trace elements were added,
based on the standard American Institute of Nutrition
(AIN)-93 diet. With the exception of iodine content, the
rats’ food was nutritionally complete.

Rats in the LI group were watered with deionized
water only and therefore received iodine only 1.2 ug/d,
from their feed. Rats of the other groups were given po-
tassium iodate (KIO3) dissolved in deionized water: the
NI control group received 140 pg/L (5-6 pg/d), and the
3HI group 480 pg/L (15-16 pg/d). The rats were fed
with the low iodine diet and administered with drinking
water containing different concentrations of iodate from
pre-pregnancy (12 weeks) until their pups reached
PN21.

After 12 weeks of treatment, 6 female rats in each
group were weighed and anesthetized with 10 % chloral
hydrate. Serum and thyroid samples were obtained and
stored. Remaining rats (n=14, each group) were mated
with normal male Wistar rats (female:male = 2:1) and the
next day a vaginal smear was obtained and analysed
under a microscope to confirm the presence of sperm-
atozoa. The rats with a smear positive for spermatozoa
were considered mated and the day was recorded as GO.
On G17, blood samples were collected from each preg-
nant rat of all groups for serum hormone analysis.

The pups from the rat mothers of each treatment
group (LI, NI, and 3HI) were permitted free access to
normal food and water from PN21 until PN45. On PN7
and PN45, the brains of six pups from each group (equal
numbers of male and female pups from each group were
chosen) were rapidly removed for immunohistochemis-
try and Western blot. Blood samples were drawn from
the heart of the pups and serum were stored at —-70°C.

On PN40-44, a Morris water maze was used for evalu-
ating spatial learning and memory in the remaining
offspring.
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Figure 4 Schematic of experimental timeline. The rats were fed with the low iodine diet and administered with different drinking water from
pre-pregnancy (12 weeks) until their pups reached PN21. LI (1.2 pg/d); NI (5-6 pg/d); 3HI (15-16 pg/d). The pups from the rat mothers of each
treatment group (LI, NI, and 3HI) were permitted free access to normal food and water from PN21 until PN45. G, gestational day; PN, postnatal

day; MWM, Morris water maze.

A schematic diagram of the experimental design and
timeline is shown in Figure 4.

Urinary and thyroidal iodine content measurement

The rats were fed with the low iodine diet and adminis-
tered with different drinking water for 12 weeks. Then 6
rats were randomly taken from different groups and urine
samples were collected within 24 hours before euthaniza-
tion. The rats were then deeply anesthetized and thyroid
tissue samples were obtained. The iodine concentration
was determined in urine and thyroid tissue homogenate
by arsenic cerium catalytic spectrophotometry.

Hormone measurements

Blood samples were centrifuged at 3400 x g for 15 min.
Serum TT,, FT4 and TSH concentrations were analysed
via chemiluminescent immunoassay (IMMULITE, Diag-
nostic Products, CA). The limit of detection for TT, was
1.0 pg/dL, and any sample below this level was recorded
as 1.0 pg/dL for statistical purposes. The upper limit of
detection of TT, was 24.0 pg/dL. For FT,, the lower and
upper limits of detection were 3.9 pmol/L and 77.2 pmol/
L, respectively. For TSH, the lower and upper limits of de-
tection were 0.002 mIU/L and 75 mIU/L, respectively.

Immunohistochemistry

On PN7 and PN45, 6 pups were taken from different lit-
ters in each group, were deeply anesthetized and per-
fused with 200 mL saline followed by 200 mL 4%
paraformaldehyde. Rat brains were embedded in paraffin
and sectioned coronally with a microtome into 5 pm-
sections. Sections were dewaxed and rehydrated and
treated for endogenous peroxidase with 3% methanol-
hydrogen peroxide for 10 min.

All sections were incubated with the primary anti-
bodies (c-Fos, 1:2000; c-Jun, 1:400; Abcam Biochemicals,
England) at 4°C overnight and were then incubated with
serum for 10 min at room temperature. The tissue sec-
tions were incubated in biotin-conjugated secondary
antibodies (Maixin, Fuzhou, China) for 30 min at 37°C,
and in streptavidin-peroxidase complex (Maixin, Fuzhou,
China) for 10 min. Sections were treated with a solution

of 3, 3’-diaminobenzidine (DAB; Maixin, Fuzhou, China)
for 3 to 10 min depending upon the staining of the DAB
reaction product observed under light microscopy. Fi-
nally, the sections were counterstained with hematoxylin,
dehydrated, rinsed, and mounted in neutral gum (China
National Medicines, Shanghai, China).

The hippocampal CA1l area of all sections was
observed at 400x. The integral optical density (IOD)
values that indicated the expression levels of the proteins
were measured using Image-Pro Plus 5.0 software
(Media Cybernetics, Silver Spring, MD, USA).

Western blot

On PN7 and PN45, the brains of the 6 pups per treat-
ment group were perfused with 200 mL 0.9% saline.
Hippocampal samples were collected to assay BDNF and
NSP-A protein expression by Western blot. Tissue sam-
ples were washed in lysis buffer containing protease and
phosphatase inhibitors (Keygen Biotech, Nanjing,
China), homogenized by sonication, and centrifuged at
10,000 x g for 10 min at 4°C. The supernatants were col-
lected and the protein concentration was measured via
the Coomassie brilliant blue assay. Tissue lysates were
diluted and then boiled at 100°C for 5 min. Samples
(50 pg) were fractionated via sodium dodecyl sulfate
polyacrylamide gel electrophoresis (10% gel for NSP-A,
and 15% gel for BDNF). Proteins were transferred onto a
nitrocellulose membrane and blocked with 5% skim milk
in Tris-buffered saline containing 0.1% Tween-20 for
one hour at room temperature. The membranes were
washed and incubated with primary antibody (Rtn-1A
[NSP-A] 1:500, Santa Cruz Biotechnology, USA; or
BDNF 1:1000, Millipore, USA). An antibody against
B-actin (1:1000; Santa Cruz Biotechnology, USA) was
used as a reference. After incubation with primary anti-
bodies, membranes were incubated with corresponding
horseradish peroxidase-conjugated secondary antibodies
(1:5000; Zhongshan Golden Bridge Biotechnology,
China) before reaction with an enhanced chemilumines-
cence solution (Alphaview 1.3, USA). The films were
scanned, and the protein band intensities were quanti-
fied with an image analysis program.
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Morris water maze test

The MWM was designed to assess spatial learning and
memory in rodents [44]. The apparatus consists of a
black circular swimming pool (120 cm diameter, 50 cm
depth) that was filled with water (24 +2°C) mixed with
black edible pigment. The pool’s four quadrants of equal
area were designated 1, 2, 3, and 4. A circular platform
(10 cm diameter) was located 2 cm below the water sur-
face in the middle of quadrant 1. The platform was the
same colour as the black swimming pool water so that it
the rats could not see it. The two investigators who
administered the water maze test were always in the
same position in the room.

The MWM test was performed on PN40-44. The en-
tire test took 5 consecutive days with 8 training trials
per day and 30-60 s inter-trial periods between two con-
secutive trials. The rat pups from the three groups
(n=10, each) were moved to the procedure room
30 min before testing. In each trial the rat was placed
into the water, immediately facing the wall of the pool at
an obvious compass location. The time required for the
rat to find the platform (escape latency time) was
recorded, with a maximal time of 120 s allowed. If the
rat failed to locate the platform in the allowed time, a la-
tency of 120 s was recorded. The rat was guided manu-
ally to the platform and allowed to stay on it for 10 s
before being returned to its home cage.

Statistical analysis

All analyses were carried out using SPSS 17.0 software;
the analyser was blind to the identity of the groups. All
data results are presented as mean+ SEM. Differences
among the three groups were analysed using one-way ana-
lysis of variance (ANOVA). When the F-value indicated
significance, post-hoc test (LSD) was used to correct for
multiple comparisons. Differences were considered statis-
tically significant at P < 0.05.

Abbreviations

3HI: 3-fold iodine; AIN: American Institute of Nutrition; ANOVA: Analysis of
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