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Learning alters theta amplitude, theta-gamma
coupling and neuronal synchronization in
inferotemporal cortex
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Abstract

Background: How oscillatory brain rhythms alone, or in combination, influence cortical information processing to
support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings
were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual
discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid
functional interpretation of learning-evoked changes.

Results: Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased,
as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and
gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and
this was not simply a consequence of increased theta amplitude. Actual discrimination performance was
significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with
theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during
stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons
could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar
changes were produced as in inferotemporal cortex after learning. The model showed that these changes could
potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without
increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity
following learning and its magnitude was correlated with discrimination performance.

Conclusions: Face discrimination learning produces significant increases in both theta amplitude and the strength
of theta-gamma coupling in the inferotemporal cortex which are correlated with behavioral performance. A
network model which can reproduce these changes suggests that a key function of such learning-evoked
alterations in theta and theta-nested gamma activity may be increased temporal desynchronization in neuronal
firing leading to optimal timing of inputs to downstream neural networks potentiating their responses. In this way
learning can produce potentiation in neural networks simply through altering the temporal pattern of their inputs.

Background
The functions of both low and high frequency oscilla-
tions in the brain are the subject of considerable specu-
lation [1]. Low frequency theta oscillations (4-8 Hz)
have been observed to increase in terms of power dur-
ing working memory tasks [2,3] and in power and
phase-locked discharge of single neurons in a visual

memory task [4]. In hippocampus the phase of theta
functions as the clock signal for timing of pyramidal
neurons and long-term potentiation (theta peaks) and
depotentiation (theta troughs) [5]. These findings may
reflect the patterns of synaptic plasticity and mainte-
nance of the memory for a stimulus. Fast frequency
gamma oscillations (30-70 Hz) can provide tighter con-
trol and coordination than lower frequency ones [6] and
are hypothesised to be responsible for higher cognitive
functions such as perceptual binding of visual features
[7]. Human electroencephalographic (EEG) recordings
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show event-related gamma activity indicating gamma as
a signature of cortical networks underlying object repre-
sentations[8]. Modulation of oscillatory synchronization
can also increase synaptic gain at postsynaptic target
sites thereby potentiating responses to learned stimuli
[9,10].
Coupling between gamma amplitude and theta phase

(theta-nested gamma) has been reported in both cortex
and hippocampus [1,11-13] and provides an effective
combination for neuronal populations to communicate
and integrate information during visual processing and
learning. It may also provide a process of temporal seg-
mentation that can maintain multiple working memory
items [14]. Altered coupling has been reported both in
the context of human cognitive and perceptual tasks in
the cortex [11] and in the rat hippocampus during item-
context association learning [12], although how this
might act to modulate neuronal activity has yet to be
established.
There is still debate as to whether functionally impor-

tant changes in theta or gamma involve amplitude or
phase parameters, or both. Some studies report that
theta phase rather than amplitude is correlated with
cognitive processes, the so-called phase reset model
[1,15,16], while others place more importance on cou-
pling between theta amplitude and gamma frequency
[11,12]. The magnitude of both theta and gamma oscil-
lations during encoding also appears to predict the effi-
cacy of subsequent recall [17] and theta can both
modulate gamma amplitude [18] and the firing of single
neurons [4]. The ratio of theta to gamma power has
also recently been shown to be correlated with memory
function in humans [19]. It is clearly important there-
fore that changes in different theta and gamma para-
meters are investigated in a number of different learning
contexts to help establish some general principles and
also to aid development of neural network models
which can further inform our interpretation of the out-
come of these changes on neural encoding.
Face recognition learning is known to involve the

inferotemporal cortex in humans, monkeys and sheep
[20] and there is phase locking between neuronal activ-
ity and theta in this region in humans [21]. We have
therefore investigated the effects of face and object dis-
crimination learning on theta and gamma oscillations
and coupling and neuronal activity in sheep IT using
64-electrode recording arrays. Our results have identi-
fied learning-related changes in the amplitude of theta,
the theta/gamma ratio and the coupling between theta
phase and gamma amplitude. We have therefore also
developed a neural network model which can effectively
reproduce our electrophysiological findings. This model
predicted that a consequence of these learning evoked
changes in theta amplitude and theta-gamma coupling

would be a potentiation of the firing of downstream
neurons by desynchronizing the firing of excitatory neu-
rons projecting to them. The presence of this predicted
desynchronization effect following learning was then
confirmed in multiunit activity recordings from the IT.

Results
Visual discrimination performance during recordings
Overall local field potential and MUA data were col-
lected from 51 separate blocks (Sheep A: 17, B: 24, C:
10) of visual discrimination trials (20-60 trials per
block). During these trials the sheep were each pre-
sented with a total of 4 to 10 different face pairs and in
addition two sheep were each presented with a non-face
object pair (see Additional file 1, Figure S1). Successful
learning was defined as the first block of 20 trials during
which the animal achieved > 80% and then continued
subsequently to perform at or above this criterion. To
compare different electrophysiological parameters as a
function of learning blocks of trials for each animal
were sub-divided on the basis of whether the > 80% cor-
rect learning criterion for a particular face or object pair
had been achieved or not. Respective mean ± sem dis-
crimination performances on trial blocks during and
after learning were: Sheep A: 57.8 ± 3.5% vs 89.4 ±
3.1%; Sheep B: 58.7 ± 8.5% vs 89.4 ± 1.5%; Sheep C:
66.8 ± 8.5% vs 90.5 ± 2.5%. There were no significant
differences in response times made by the three animals
during trials with errors as opposed to correct choices.
After learning, while there was a slight tendency for
response times to be shortened this was not significant
in any animal. Respective mean ± sem response times
for both correct and error choices on trial blocks during
and after learning were: Sheep A: 1.89 ± 0.06s (correct)
and 1.87 ± 0.09s (error) vs 1.77 ± 0.06s (correct) and
1.73 ± 0.04 (error); Sheep B: 2.42 ± 0.10 (correct) and
2.35 ± 0.10s (error) vs 2.31 ± 0.09s (correct) and 2.48 ±
0.12s (error); Sheep C: 2.99 ± 0.38s (correct) and 3.44 ±
0.38s (error) vs 2.37 ± 0.11s (correct) and 2.38 ± 0.26s
(error) - p > 0.05 in all cases). This also indicates that in
general the animals were equally motivated to perform
the task during and after learning.
Following training, sheep generally learned to discri-

minate between new pairs of faces at > 80% correct in
20-80 trials although this was highly variable and learn-
ing could occur over time-periods of anything from 5-
10 minutes to several days or more. In three cases (two
in Sheep A and one in Sheep B) the > 80% criterion for
novel face pairs was not reached even after 80-140 trials
conducted across several days of recording sessions.

Theta and gamma oscillations in inferotemporal cortex
A wavelet transform applied to each individual LFP
showed substantial theta band activity across the 4-8 Hz
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range, and synchronized across IT electrodes, before and
during stimulus presentation (see Figure 1 and Addi-
tional file 1, Figure S2). There was a much smaller con-
tribution from gamma band activity (30-70 Hz) and
across the recording sessions significant (p < 0.001) cou-
pling occurred between theta phase and gamma ampli-
tude both before (mean ± sem = 76.5 ± 6.2% of
recording electrodes in left IT and 84.6 ± 4.2% in right
IT) and during (80.6 ± 5.8% in left IT and 84.6 ± 4.7%
in right IT) visual stimulus presentation (see Figure 1).
While we were able to detect significant power in the
high gamma range (70-100 Hz) in some recording ses-
sions it was extremely low (15-25% of low-gamma
power) and we therefore focussed our analyses on the
low gamma range. Where high gamma power was sig-
nificantly above noise we found that its amplitude
showed a similar degree of coupling with theta phase
across the 70-100 Hz range as for low frequency gamma
(data not shown).

Effects of learning on theta and gamma oscillations
In all cases effects of learning were tested using
ANOVA tests but in a number of cases data for did not
show a normal distribution and so p values from an
additional permutation test (PT) are also given where
these were significant or close to significance. An analy-
sis of theta wave activity across the three animals
revealed a significant increase following learning in theta
amplitude (two-way ANOVA: left IT, F1,29 = 20.0, p <
0.001; right IT, F1,41 = 18.2, p < 0.001; PT, p < 0.001 in
both cases) during the first 500 ms after stimulus onset
compared with the 500 ms prior to it. A 500 ms time
window was chosen throughout for the analysis of learn-
ing effects since animals were capable of making an
operant response in 1s in some cases and could only be
guaranteed to be looking at the stimulus pictures for
~500 ms. We wanted to limit our analyses to the per-
ceptual processing component of the task rather than to
the response phase. The observed changes in theta
amplitude during this period represented an increase of
20-50% in each animal following learning (Figure 2B).
The proportion of recording electrodes showing a signif-
icant (p < 0.05) during-stimulus rise in theta amplitude
increased in all animals after learning and in both left
and right IT (left IT: F1,29 = 13.87, p < 0.001 - mean ±
sem during learning = 2.51 ± 1.49% vs 42.26 ± 8.92% of
electrodes after learning; right IT: F1,41 = 39.03, p <
0.001 - during learning = 3.19 ± 2.35% vs 64.47 ±
12.43% of electrodes after learning; PT, p < 0.001 in all
cases). During learning the proportion of electrodes
showing increased theta amplitude during stimulus pre-
sentation did not differ significantly from chance (one-
sample t-test, left IT t11 = 1.96, p = 0.076; right IT t21 =
1.45, p = 0.163). There were no overall significant

Figure 1 Theta-gamma coupling in IT. (A) shows a typical
example of coupling between theta phase and gamma amplitude
taken from Sheep B (session 110305-1, channel 3) for the pre-
stimulus (left) and during-stimulus (right) periods before (left) and
during (right) presentation of a learned stimulus pair. There is a
clear increase in coherence (represented by pseudocolor scale)
across the entire gamma range and parts of the theta range
(particularly at 8 Hz) and no evidence for coupling with gamma at
phase frequencies immediately below or above the theta band. The
red/yellow areas indicate where coupling between the two
frequencies was significant (p < 0.001). (B) Shows typical data from
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changes in gamma amplitude (left IT: F1,29 = 0.719, p =
0.404; right IT: F1,41 = 0.375, p = 0.544 - see Figure 2C)
as a result of learning, and no individual electrodes
showed a significant increase in gamma amplitude. The
net result was a significant 25-55% increase in the ratio
of theta to gamma amplitude (left IT: F1,29 = 24.08, p <
0.001; right IT: F1,41 = 31.22, p < 0.001; PT, p < 0.001 in
all cases) during stimulus presentation after learning
(see Figure 2D).
In addition, coupling between theta and gamma was

also strengthened after learning in terms of a greater
coherence (~7%) between the two frequencies (left IT:
F1,29 = 9.35, p = 0.005, PT, p < 0.001; right IT: F1,41 =
14.4, p < 0.001, PT, p = 0.0011)(see Figure 2E). A signif-
icant effect of learning was also seen using the mean
vector length method [11] (left IT: mean ± sem change
during learning = 1.2 ± 10.1%, after learning = 11.1 ±
3.01% - F1,29 = 4.37, p = 0.04, PT, p = 0.0189; right IT:
mean ± sem change during learning = - 0.93 ± 5.3%,
after learning = 22.1 ± 6.64% - F1,41 = 11.19, p = 0.002,
PT, p < 0.001 ) and modulation index method [13] (left
IT: mean ± sem change during learning = 0.6 ± 7.07%,
after learning = 26.0 ± 8.04% - F1,29 = 4.39, p = 0.04,
PT, p = 0.003; right IT: mean ± sem change during
learning = 0.9 ± 4.67%, after learning = 28.8 ± 8.15%
F1,41 = 9.83, p = 0.003, PT, p < 0.001) for quantifying
coupling strength. There was also significantly increased
tightening of theta phase across electrodes after learning
in the right IT (left IT: F1,29 = 0.91, p = 0.348; right IT:
F1,41 = 8.09, p = 0.007, PT, p = 0.0014 - see Additional
file 1, Figure S8a) where z-scores were ~3-fold higher in
the right IT than in the left IT (see Figure 2F). A 3-way
ANOVA adding hemisphere as a factor showed that
while there was no overall effect of side (F1,56 = 0.03, p
= 0.871) or learning (F1,56 = 0.24, p = 0.629) there was a
small significant interaction between learning and hemi-
sphere (F1,56 = 3.89, p = 0.05) indicating that learning
was affecting phase tightening differentially in the left
and right IT.
We found no evidence for extensive theta-phase

resetting in response to stimulus presentation with <

1.5% of recording electrodes showing a significant (p <
0.05) effect. There was also no significant increase in
the associated phase reset z-score following learning in
the left IT (F1,29 = 1.30, p = 0.263), although in the
right IT significance was just achieved with the
ANOVA but not the permutation analysis (F1,41 =
5.00, p = 0.031, PT, p = 0.062). However, these mean
z-scores for theta phase reset were generally very low
(from 1.5-2.1) (Figure 2G).
Overall, levels of theta synchronization across record-

ing electrodes were higher in the right IT (> 95%) than
in the left (~48%) (3-way ANOVA: F1,56 = 189.7, p <
0.001, PT, p < 0.001) but with no effect of learning in
either hemisphere (left IT: F1,29 = 0.34, p = 0.657; right
IT: F1,41 = 0.55, p = 0.561) (see Figure 2H).

Correlations between altered theta and gamma
oscillations and behavior
With only a relatively small number of blocks of trials
being recorded in each animal for the main analysis
both overall correlations across the three sheep and
individual correlations were performed. Table 1 shows
that In both left and right IT there was a significant
positive correlation between behavioral discrimination
performance in each block of trials and the theta and
gamma parameters influenced by learning (theta ampli-
tude; theta-gamma ratio; theta-gamma coherence) both
across the 3 sheep and in the majority of cases in each
individual A similar correlation with behavioral perfor-
mance was also found when strength of theta-gamma
coupling was quantified using the mean vector length
method [11] or modulation index method [13]. There
was a trend toward a positive correlation with theta
phase tightening in the right IT but this just failed to
achieve significance either overall (p = 0.06) or in any
individual animal.
In the majority of cases we were unable to make

recordings where an animal learned to discriminate
between a specific face-pair over successive blocks of
trials during the same recording session, although we
were able to do this on one occasion for both sheep A
and B. Figure 3 shows data for Sheep B which clearly
illustrate that increased theta amplitude, theta/gamma
ratio and theta/gamma coherence occurred immediately
in the first block of 20 trials where the > 80% correct
criterion was reached. Thus changes in these parameters
could take place in 5-10 min of trials although in most
cases they were observed over trials conducted across
several days. We also confirmed that in four other cases
(three for sheep A and one for Sheep B), where 80-140
successive trials were given with the same face pair but
the learning criterion was not achieved, there was no
corresponding change in these same theta and gamma
parameters. This showed that the observed learning

10 adjacent individual channels (from same sheep and recording
session as in (A)) which exhibited significant (p < 0.001) coupling
between theta phase and gamma amplitude across a 1 s before
and a 1s period during stimulus presentation. Peaks in gamma
amplitude (red) can clearly be seen across the electrodes during the
majority of the theta cycles displayed. These data also illustrate the
strong synchronization of theta phase across individual channels.
Patterns of gamma amplitude changes are also very similar across
the electrodes. (C) Shows an example of the strength of coupling
between theta phase and gamma amplitude for a single channel
across two theta cycles. It can be seen that there is consistently
stronger locking at around 180 degrees in both cycles.
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Figure 2 Evoked potential, MUA and theta latency profiles and theta/gamma activity changes after learning. (A) Typical average latency
profile for theta, MUA and VEP (P100 and N300) over 40 trials post learning (face-pair shown at time 0). The change in MUA in response to the
stimulus is mainly restricted to the 500 ms time window. (B) Mean ± sem % change in theta amplitude (C) Gamma amplitude (D) Theta/gamma
ratio (E) Theta gamma coherence and (F) Theta phase tightening (G) Mean ± sem z-scores for theta phase synchronization and (H) Theta phase
reset overall and in each of the 3 different animals (A, B and C), and for both the right and left IT, during sessions where discrimination learning
performance had yet to reach > 80% (NL = not learned) compared with those where it had (L = learned - corrected t-tests, *p < 0.025 - left IT,
and < 0.017 for right IT, **p < 0.01, ***p < 0.001 vs NL and ##p < 0.01, ###p < 0.001 for left IT vs right IT). For overall changes across the sheep
p < 0.05, **p < 0.01 and ***p < 0.001 from ANOVA tests. For both NL and L blocks, comparisons were made between data averaged across
electrodes and individual trials for the 500 ms immediately prior to stimulus presentation and the first 500 ms during it.
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effects were not simply due to stimulus repetition (see
Figure 4).
Finally, for the two learned face-pairs where we ran

additional blocks of trials in Sheep A and B with the
face images inverted, this resulted in a complete inability
to discriminate between the two faces (55% and 45%
correct responses respectively). As expected, the pat-
terns of theta/gamma changes in both cases were similar
to those seen in the face pairs prior to the learning cri-
terion being achieved (data not shown).

Interdependence of theta amplitude and theta-gamma
coupling changes
Since it was possible that theta-gamma coupling
changes might be totally dependent upon those of
theta amplitude, and both had a similar positive corre-
lation with discrimination performance, we carried out
a number of further analyses to test whether theta
amplitude changes were always predictive of those in
theta-gamma coupling. Firstly, we found no evidence
for a significant positive correlation between theta
amplitude and the strength of theta-gamma coherence
across the 3 animals (left IT: r = 0.30 and right IT: r =
0.14, p > 0.05 in both cases). Next, we carried out an
additional analysis looking at changes in these two
parameters across different individual theta frequen-
cies. While learning significantly increased theta ampli-
tude at all 1 Hz intervals across the 4-8 Hz theta range
in both left and right IT (Figures 5A and 5B), theta-
gamma coherence was only significantly increased at 8
Hz in the left IT and 6 Hz in the right IT (Figures 5C
and 5D). There were also no significant positive corre-
lations between them at any individual theta frequency
(left IT: 4 Hz r = -0.30, 5 Hz r = 0.03, 6 Hz r = 0.10, 7
Hz r = -0.09, 8 Hz r = 0.25; right IT: 4 Hz r = 0.07, 5
Hz r = 0.12, 6 Hz r = 0.13, 7 Hz r = 0.04, 8 Hz r =
-0.03, p > 0.05 in all cases). This restricted involve-
ment of higher theta frequencies in increased coupling
with gamma following learning can also be seen in

Figure 3. Interestingly, equivalent significant stimulus-
evoked increases in theta-gamma coherence occurred
at 4 Hz both during and after learning (Left IT: during
learning, t11 = 3.35, p = 0.006, after learning, t21 =
2.98, p = 0.007; Right IT: during learning, t21 = 3.04, p
= 0.006, after learning, t25 = 3.88, p < 0.001), Thus,
visual stimuli routinely increase coupling between the
phase of low frequency theta and gamma amplitude
but learning is specifically associated with increased
coupling of gamma amplitude and theta phase at
higher theta frequencies. Analysis of correlations
between behavior and theta amplitude within the three
animals showed a consistent pattern between them (i.e.
positive correlations were generally high across the
entire theta frequency range). However, with theta-
gamma coupling Sheep A in the right IT had the
strongest positive correlations with behavior only at 6
(0.67) and 7(0.58)Hz. Sheep B had strongest positive
correlations in both hemispheres at 6 (right 0.33, left
0.35) and 8 (right 0.40, left 0.32)Hz while Sheep C a
strong correlation in both hemispheres only at 8 Hz
(right 0.50, left 0.64).

Visual evoked potentials and MUA responses
Following stimulus onset there were similar peak
response latencies for the VEP, MUA and peak theta
amplitude (overall mean ± sem across all recording ses-
sions in the 3 animals: VEP: P100 = Right 133 ± 7 ms,
Left = 118 ± 6 ms; N300 = Right 367 ± 13 ms Left 321
± 15 ms; MUA: Right 266 ± 4 ms, Left 255 ± 4 ms;
Theta = Right 265 ± 14 ms, Left 234 ± 11 ms) (see Fig-
ure 2A). However, as would be predicted from the lack
of evidence for theta phase resetting in response to sti-
mulus presentation, there was no significant correlation
between the latency of peak theta amplitude and that of
the MUA (left IT: r = 0.164; right IT: r = -0.02, P > 0.05
in both cases) or the N300 (left IT: r = 0.35; right IT =
0.16, P > 0.05 in both cases) although there was with
the P100 in the left (r = 0.49, p = 0.006) but not the

Table 1 Correlations between theta and gamma parameters in IT and discrimination performance

Theta and gamma Sheep A Sheep B sheep B Sheep C Sheep C Overall Overall

parameters Right IT Left IT Right IT Left IT Right IT Left IT Right IT

n = 17 n = 24 n = 22 n = 10 n = 10 n = 34 n = 49

Theta amplitude +0.56* +0.51* +0.41* +0.62* +0.59 +0.54** +0.45**

Gamma amplitude -0.26 +0.25 +0.33 -0.28 -0.43 -0.04 +0.19

Theta/gamma ratio +0.59* +0.76* +0.37 +0.72* +0.72* +0.75** +0.38**

Theta phase tightening +0.45 +0.00 +0.25 -0.32 +0.30 -0.11 +0.26

Theta/gamma coupling parameters

Coherence +0.50* +0.40* +0.41* +0.53 +0.75* +0.39** +0.37**

Mean vector length +0.45 +0.59* +0.53* +0.63* +0.58 +0.56** +0.45**

Modulation index +0.47* +0.58* +0.38 +0.50 +0.42 +0.51** +0.35*

*p =/< 0.05, ** p < 0.01 - Pearson correlation test
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right IT (r = 0.27, p = 0.08). The patterns of the VEPs
were visibly different between face and object pairs
where the magnitude of the P100 component was con-
sistently greater for face pairs than for non-face objects
and face inversion also reduced its size compared to
when upright faces were presented (see Additional file
1, Figure S4). Neither the response latencies nor the
magnitudes of the P100 and N300 components of VEPs
were influenced by learning (response latencies: P100 -
excluding the two non-face pairs: left IT: during learning
= 111.1 ± 7.4 ms vs after learning 123.4 ± 8.2 ms, F1,27
= 0.383, p = 0.541; right IT: during learning = 131.8 ±
5.9 ms vs after learning 132.7 ± 11.9 ms, F1,27 = 0.054, p
= 0.817, N300: left IT: during learning = 310.2 ± 24.3

ms vs after learning 327.6 ± 19.9 ms, F1,29 = 0.012, p =
0.914; right IT: during learning = 380.3 ± 16.6 ms vs
after learning 355.8 ± 19.9 ms, F1,41 = 0.178, p = 0.675,
response magnitude: P100: left IT: during learning =
5.56 ± 0.09 μV vs after learning = 7.29 ± 1.5 μV, F1,27 =
0.559, p = 0.461; right IT: during learning = 5.0 ± 0.9
μV vs after learning = 7.3 ± 1.4 μV, F1,37 = 0.241, p =
0.627, N300: left IT: during learning = -12.52 ± 3.0 μV
vs after learning = -15.04 ± 2.37 μV, F1,29 = 0.328, p =
0.541; right IT: during learning = -11.5 ± 1.4 μV vs after
learning = -14.01 ± 1.83 μV, F1,41 = 0.67, p = 0.418).
A number of MUA recording channels showed significant

(p < 0.05) phase locking with theta in each block of visual
discrimination trials (during learning mean ± sem % across

Figure 3 Rapid time course of learning effects on theta nested gamma. Pseudocolor panels show changes in: (A) Theta amplitude, (B)
Theta/gamma ratio and (C) Coherence between theta phase and gamma amplitude in the right IT during the learning of one new face pair in
Sheep B over sequential (top to bottom) blocks of 20 trials conducted over approximately a 20 min period (data plotted from 60 electrodes).
Discrimination performance in each of the 4 blocks is shown on the left hand side (i.e. the learning criterion of > 80% correct was achieved in
the second block of 20 trials and in subsequent blocks). The face pair stimulus occurs at time zero and the pseudocolor scale indicates
normalised (by the maximum value during the stimulus) differences between pre and during stimulus. It can be seen that increased theta
amplitude and the theta/gamma ratio occur in blocks of trials where the learning criterion is achieved. Theta-gamma coupling also increases
across the gamma range but most notably at 6 and 8 Hz in the theta range.
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Figure 4 Theta/gamma changes only occur across sequential blocks of trials where learning occurs. Histograms show examples of %
change in theta amplitude, the theta/gamma ratio and theta/gamma coherence across sequential blocks of trials (either 3 or 4 blocks of 20-40
trials) for novel face-pair discriminations where two sheep either do (SA1 and SB1) or don’t (SA2 and SB2) achieve a > 80% learning criterion.
Blocks of trials where the > 80% criterion was achieved are shown as black bars. It can be seen that there is generally a very good
correspondence between increases in these three parameters and performance above the learning criterion being achieved and maintained.
There is no suggestion of changes occurring simply as a function of repeating blocks of trials over a particular time course and independent of
discrimination performance.

Kendrick et al. BMC Neuroscience 2011, 12:55
http://www.biomedcentral.com/1471-2202/12/55

Page 8 of 23



the theta range = left IT: 20.4 ± 2.4%; right IT 19.7 ± 1.7%
and after learning = left IT: 30.7 ± 2.4%; right IT: 25 ±
2.4%). The slight increase after learning was significant in
the left (F1,26 = 4.91, p = 0.036, PT, p = 0.022) but not in
the right IT (F1,38 = 1.95, p = 0.171). Phase locking occurred

in each 1 Hz bandwidth from 4-8 Hz frequencies both dur-
ing and after learning (see Additional file 1, Figure S5).
For analysis of MUA firing rate changes electrode

channels were subdivided into those that either
increased or decreased their mean firing frequency

Figure 5 Differential effects of learning on theta amplitude and theta-gamma coupling. (A-D) histograms show effects of learning on
theta amplitude and theta-gamma coupling where the theta band is divided up into 1 Hz steps from 4-8Hz: (A) Theta amplitude in left IT, (B)
Theta amplitude in right IT, (C) Theta-gamma coupling in left IT, (D) Theta-gamma coupling in right IT, In (E-F) histograms show correlations with
discrimination performance: (E) Correlation with theta amplitude and theta-gamma coherence in the left IT, (F) same as (E) but for the right IT.
*** p < 0.001, ** p < 0.01 and * p < 0.05 vs during learning (A-D) or correlation with behavior (E-F).

Kendrick et al. BMC Neuroscience 2011, 12:55
http://www.biomedcentral.com/1471-2202/12/55

Page 9 of 23



during a block of trials. As can be seen from the exam-
ple MUA response profile given in Figure 2B in most
cases the duration of altered firing rates in response to
stimuli did not extend beyond the 500 ms sampling per-
iod chosen for analysis. Overall, there was no significant
effect of learning on the number of recording channels
showing increased or decreased firing rates (Mean ±
sem % channels excited in Left IT: 60.3 ± 6.8% during
learning and 55.7 ± 4.4% after learning, F1,27 = 0.442, p
= 0.512; Right IT: 43.2 ± 11.7% during learning and 48.6
± 13.1% after learning, F1,39 = 0.78, p = 0.382) and no
effect on the magnitude of the changes in firing rate
shown in response to visual stimuli (see Figure 6). This
absence of learning-associated firing rate changes is con-
sistent with the similar absence of changes in gamma
amplitude.

Theta-nested gamma generated by a neuronal network
We next generated a neural network model of a simi-
lar size to the typical number of single neurons
sampled by our 64-channel arrays (~200). The model
has 100 excitatory (glutamatergic with a-amino-3-
hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and
N-methyl-D-aspartic acid (NMDA) receptors) output
neurons modulated by 50 fast and 50 slow inhibitory
(g-aminobutyric acid type A receptors (GABAA) neu-
rons and projecting to a single downstream neuron
(Figure 7A). By adjusting the coupling strength
between these neurons we found they could indeed
produce theta-nested gamma oscillations (Figure 7B).
The generation of theta nested gamma required only a
weak, but present, coupling coefficient between the
fast inhibitory GABAA receptor type neurons and the
excitatory neurons and a strong coupling between the
latter and the slow inhibitory type ones. There also
had to be recurrent coupling between the fast inhibi-
tory and excitatory cells. Increasing the fast inhibitory
coupling strength tended to amplify gamma activity
whereas increasing that of the slow inhibitory coupling
amplified theta. So the two types of connections
appear competitive in this context.

Effects of altering NMDA receptor sensitivity in the model
We first established that the model was able to repro-
duce patterns of theta and gamma activities observed in
the IT. Simulations revealed similar changes in theta
power during stimulus application and at the same
latency (see Additional file 1, Figure S6 and Additional
file 1, Figure S7). Theta activity was also strongly syn-
chronised across the network and there was phase tigh-
tening during stimulus presentation (see Additional file
1, Figure S7 and Additional file 1, Figure S8).
Having validated the model’s utility we next used it to

investigate potential functional consequences of altering

the ratio of theta to gamma to produce shallow nested
gamma (as seen after learning) on communication
between excitatory and downstream neurons in compar-
ison with deeper nested gamma (similar to before learn-
ing) or where gamma activity was minimal. Figure 7B
shows that the downstream neuron response during the
stimulus is strongest when there is shallow nested
gamma and there is increased theta amplitude and
strong coupling between the two frequencies. With dee-
per nested gamma, excitatory neuron responses appear
more highly synchronized and there is reduced theta/
gamma coherence and a weaker downstream neuron
response. When gamma is minimised to produce a very
high ratio of theta to gamma there is reduced excitatory
output and downstream neuron activity and theta/
gamma coherence (Figure 7B). Thus for optimal cou-
pling between gamma and theta, and to evoke maximal
responses in the downstream neuron, gamma should be
shallow nested on theta, producing a slightly increased
theta-gamma ratio, as seen after learning.
We then used the model to investigate if NMDA

receptor changes alone in the network could reproduce
learning-induced changes in IT theta/gamma activity. It
was found that increased NMDA receptor sensitivity on
and between the excitatory neurons (NMee) and
between them and the slow inhibitory ones (NMes)
could account for the enhanced theta amplitude without
changing gamma (Figure 8A). It was possible to achieve
the same outcome by combining NMDA receptor
changes with increased GABAA receptor sensitivity
between the slow inhibitory and excitatory neurons
(data not shown). If the connection with the fast inhibi-
tory neurons (NMef) was also altered this increased
gamma amplitude and therefore did not replicate IT
findings. Changes in the theta gamma ratio and theta/
gamma coherence seen in IT recordings were also con-
firmed (Figures 8B and 8C). Figure 8D shows that firing
rates of the excitatory neurons are unchanged following
the NMDA receptor changes mimicking learning but
there is nevertheless a highly significant overall increase
in the firing rate of the downstream neuron (Figure 8E)
and this is positively correlated with the size of the
theta/gamma ratio (Pearson correlation, r = 0.34, p <
0.01 - Figure 8F).
Finally we also used the model to confirm findings in

the IT that theta-gamma coupling changes were not
necessarily dependent upon those of theta amplitude.
To achieve this we systematically varied the strength of
the connections between the slow and fast inhibitory
neurons (GAsf) and within the slow inhibitory neurons
(GAss). Simulations at different stimulus strengths
showed that under these circumstances increased cou-
pling strength could occur without any increase in theta
amplitude (see Additional file 1, Figure S9).
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Figure 6 Effects of learning on MUA firing rates and synchronization. (A) mean ± sem change in firing rate in response to visual
discrimination stimuli in recording channels showing an overall increase in firing rate during the stimulus across a blocks of trials where either
the animals (Sheep A-C and either left or right IT) were still learning (NL = not learned) or had learned (> 80% correct choice, L = learned)(open
bars are pre-stimulus and black bars during stimulus values). The overall mean for all animals is shown on the right hand side of each set of
histograms. (B) Similar changes in firing rates of recording channels showing reduced firing rates. (C) Change in synchronization index of
neuronal firing as a function of learning. Paired t-test: * p < 0.05, ** p < 0.01 for the 500 ms pre vs 500 ms during the stimulus. (D) Shows
overall % changes across the 3 animals as a function of learning with significant effects of learning revealed by ANOVA tests only for the
synchronization index in both left and right IT (## p < 0.01).
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Figure 7 Neural network model and simulations showing effects of altering theta and gamma contributions on excitatory output
neuron and downstream neuron activity. (A) Schematic showing connectivity in the neural network model together with the coefficient
variables representing AMPA (AM), NMDA (NM) and GABAA (GA) receptors (INs = slow and INf = fast inhibitory neurons, Ex = excitatory neurons;
lower case letters indicate direction of connectivity - s = INs, f = INf and e = Ex - i.e. NMes = NMDA receptor activated by connection from Ex to
INs neurons). (B) Responses to both a ramped and white noise stimulus (top. Iapp = 0.8) (top panel) made by excitatory neurons (second panel)),
LFP (third panel), the power contribution of different frequencies across the theta/gamma range (fourth panel), the downstream neuron (fifth
panel) and coupling of theta phase and gamma amplitude (bottom panel). Data in the three columns are from a single run of the model using
different parameter settings (Left, shallow theta-nested gamma with a theta/gamma ratio 3.4:1; middle, deep theta-nested gamma with a theta/
gamma ratio 2.7:1; right, minimal gamma with a theta/gamma ratio of 10:1).
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Temporal desynchronization of neuronal firing
The potentiation of downstream neuron responses pre-
dicted by the model, even in the absence of excitatory
output neuron firing rate changes, suggested a temporal
re-organisation of the latter might be enhancing their
impact. We therefore investigated whether temporal
synchronization in excitatory neuron firing was signifi-
cantly altered as a result of simulated learning changes.
Repeated simulations (average of 10 runs) using the
model confirmed that learning produced a significantly
greater desynchronization of the excitatory neuron out-
put across a range of stimulus strengths (overall mean ±
sem synchronization index before learning = 0.068 ±
0.0005 and after learning = 0.062 ± 0.001 t-test, t18 =
-5.3, p < 0.0001, Figure 9A). Synchronization levels were
negatively correlated with the size of the theta/gamma
amplitude ratio (Pearson correlation r = -0.42, p <

0.001, Figure 9B and the firing frequency of the down-
stream neuron (r = -0.88, p < 0.001, Figure 9D). An ana-
lysis of the distribution of spikes from excitatory
neurons in the network revealed that activity occurred
primarily during the peak and subsequent fall of each
theta wave and that on average significantly more time
bins contained spikes after changes associated with
learning (mean ± sem = 4.99 ± 0.29 before learning vs
5.92 ± 0.19 after learning, 5 ms bins during each theta
wave for 1s during the stimulus, t18 = -2.73, p = 0.01,
Figures 9E and 9F).
Since our model predicted that learning-induced

changes in theta and its relationship to gamma should
increase the impact of the firing of excitatory neurons
on those downstream by desynchronizing their output
we hypothesized that such desynchronization should
also occur in MUA recordings from IT neurons. Despite

Figure 8 Learning effects produced in the model by altering NMDA receptor sensitivity. Graphs show changes (after learning = black;
during learning = gray) in (A) Theta and gamma amplitude as a function of stimulus strength (Iapp). (B) Theta/gamma ratio, (C) Coherence
between theta phase and gamma amplitude (D) Firing rate of the excitatory output neurons (E) Firing rate of the downstream neuron and (F)
Positive correlation between downstream neuron firing rate and magnitude of the theta/gamma ratio (r = 0.34, P < 0.01). NMDA, AMPA and
GABA A receptor coefficients after learning are the same as for shallow nested gamma in Figure 8B. For during learning NMee = 0.002 and NMes
= 0.0001; after learning NMee = 0.0035 and NMes = 0.00055. Data are means ± sems from 10 averaged runs of the model. Taking an overall
average across the different values of Iapp, t-tests revealed significant differences between before and after simulated learning in theta
amplitude (A), t18 = 81.5, p < 0.0001; gamma amplitude (B), t18 = -12.1, p < 0.0001; theta/gamma ratio (C), t18 = 32.02, p < 0.0001; theta/gamma
coherence (D), t18 = 2.6, p = 0.03; excitatory neuron firing rate (E), t18 = -2.23, p = 0. 04 and the firing rate of the downstream neuron (F), t18 =
13.6, p < 0.0001.
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the contribution of both inhibitory interneurons and
output neurons to the MUA, Figure 6C shows that after
learning there was indeed a significant overall desyn-
chronization change across the 3 animals during the
period of the first theta wave after stimulus onset (dur-
ing learning synchronization index = 0.0871 ± 0.007
pre-stimulus and 0.0937 ± 0.01 during stimulus, t-test,
t4 = -1.47, p = 0.22; after learning = 0.0861 ± 0.005 vs
0.0798 ± 0.006, t4 = 5.61, p = 0.005). The proportionate
change in the synchronization index between during
and after learning was significant (left IT: F1,27 = 9.71, p
= 0.004; right IT: F1,39 = 15.17, p = 0.001 - Figure 6D).
As in the model, levels of synchronization across the
two hemispheres were also negatively correlated with
the theta/gamma ratio (Pearson correlation, r = -0.32, p
< 0.001, Figure 9C) and after learning there were signifi-
cantly more 5 ms bins with spike activity across each
electrode during stimulus period theta waves in the left

IT (4.30 ± 0.11 per bin during learning vs 5.96 ± 0.42
per bin after learning, F1,27 = 5.21, p = 0.031, PT, p =
0.02); using only electrodes showing stimulus-evoked
increased firing rates in the recording arrays). This
almost achieved significance in the right IT with the
ANOVA test but did so with the permutation test (5.19
± 0.30 per bin during learning vs 5.85 ± 0.27 per bin
after learning, F1,39 = 3.59, p = 0.066, PT, p = 0.04)(see
Additional file 1, Figure S10). There was also a signifi-
cant negative correlation between the number of bins
with spike activity per theta wave and the magnitude of
the synchronization index across both hemispheres (r =
- 0.30, p < 0.001). Finally, actual visual discrimination
performance across the three animals was significantly
negatively correlated with the change in synchronization
during the stimulus (left IT, r = - 0.42, p = 0.018; right
IT, r = -0.35, p = 0.018 - see Additional file 1, Figure
S10- individual animals A Right IT = -0.35; B left IT =

Figure 9 Learning-associated desynchronization in model excitatory neurones and IT. Graphs show (A) Significantly greater
desynchronization of the 100 excitatory neurons in the model as a function of stimulus strength (Iapp) after learning (black) compared with
during it (grey) (using an overall mean for all Iapp values t18 = -5.30, p < 0.0001). Data are mean ± sem from 10 runs. (B) Negative correlation
between synchronization and the theta/gamma ratio in MUA recordings from IT (r = -0.32, p < 0.001), (C) Negative correlation between
excitatory neuron synchronization and size of the theta/gamma ratio, r = -0.42, p < 0.001, (D) Negative correlation between synchronization
index and firing rate of the downstream neuron r = -0.60, p < 0.001, (E) Firing frequency distribution and theta waves generated by the model’s
100 excitatory neurons in 5 ms bins for 1s after stimulus onset during learning and (F) after learning (Iapp = 0.8). After learning more time bins
during theta waves have active neurons compared with before learning as a result of greater desynchronization. NMDA, AMPA and GABA A

receptor coefficients as in Figure 8.
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-0.46*, right IT = -0.48*; C left = -0.37, right = -0.77* -
*p < 0.05).

Discussion
Overall, our results provide the first demonstration that
both theta amplitude and theta-gamma coupling in IT
are strongly and independently influenced by learning
and may act to amplify and improve discriminability of
inputs converging onto downstream neurons through a
temporal desynchronization of neuronal firing. The
magnitude of observed changes also correlates strongly
with behavioral discrimination performance. The novel
neural network model we have developed demonstrates
that competitive and reciprocal coupling between fast
and slow inhibitory interneurons and excitatory output
neurons is important for generating theta-nested gamma
and that learning-evoked changes in IT can be simu-
lated by increasing NMDA receptor sensitivity, as in
many other learning situations [22].
The time-course required for changes in theta and

gamma correlates precisely with achievement of the >
80% learning criterion and since this time course was
highly variable it effectively rules out any simple explana-
tion of our findings in terms of elapsed time or stimulus
repetition. Indeed, no changes were observed when ani-
mals failed to learn even after large numbers of trials. It
is unlikely that there was differential attention to the
visual stimuli presented following learning since animals
were extensively trained to view the fixation stimulus
before each trial was initiated, and latencies and magni-
tudes of VEPs as well as behavioral response times were
unchanged. Sheep also have very limited eye movements
and the receptive fields of IT neurons responding to
faces and other visual stimuli are very large [20]. While
we cannot completely rule out some contribution of the
P100 or N300 components of the VEP to increased theta
amplitude during stimulus presentations the fact that
neither of their latencies not their magnitudes were sig-
nificantly influenced by learning make it unlikely that
they were contributing to the large increase in theta
amplitude found. Indeed, even the small number of
recording electrodes showing increases in theta ampli-
tude seen during stimulus presentation before the learn-
ing criterion had been reached did not achieve
significance across the three animals.
To the best of our knowledge this is the first demon-

stration of extensive theta-nested gamma in IT and we
confirmed both the presence of coupling and learning-
evoked changes as well as correlations with behavioral
performance using a coherence method as well as mean
vector length [11] and modulation index [13] methods.
Our model shows that it can be generated by a simple
network of excitatory glutamatergic pyramidal neurons
and slow and fast inhibitory GABAA receptor

interneurons that are likely to be present in this as in
other brain regions [23,24]. In the model each module of
one excitatory neuron and its two inhibitory neurons is
capable of generating theta-nested gamma, so our find-
ings are not dependent upon model size. That both slow
and fast inhibitory interneurons are required for the gen-
eration of theta-nested gamma confirms a previous pre-
diction [25], although differs from another study in the
hippocampus suggesting that h-currents generated in
oriens-lacunosum interneurons are important [26].
Although theta amplitude changes can enhance the

strength of theta-gamma coupling by making theta
phase more detectable [11,12] we have shown that
learning effects on theta amplitude and theta gamma
coupling in IT can be dissociated in terms of which
theta frequencies are involved. Thus, whereas behavio-
rally correlated changes in theta amplitude occurred
across the 4-8 Hz range, those in coupling with gamma
only occurred at 6 Hz (right IT) or 8 Hz (left IT). There
were also no positive correlations between changes in
theta amplitude and in theta-gamma coherence. Inter-
estingly, in comparison with lower theta frequencies (4-
6 Hz), higher ones (6-12 Hz) are resistant to cholinergic
drugs [27]. This might suggest a non-cholinergic
mechanism for theta-nested gamma. In any event, learn-
ing evoked changes in theta amplitude and theta-gamma
coupling in the IT clearly exhibit a degree of indepen-
dence and may have separate functional significance.
This is supported by a recent study reporting increased
theta-gamma coupling in the hippocampus following
item-context association learning in rats, but without
changes in theta amplitude [12].
Learning evoked increases in the theta-gamma ratio in

the present study were strongly correlated with both
behavioural performance and also with desynchroniza-
tion in both our network model and the IT. This
appears contradictory with recent human findings that
an increased theta-gamma ratio is found in individuals
with significant cognitive impairment [19]. However, our
network model shows that when large increases in this
ratio are generated (by reducing gamma power), similar
to those reported in humans with cognitive impairment,
then this results in reduced theta amplitude changes,
weaker coupling between theta and gamma and also
reduced firing in both excitatory output and down-
stream neurons in response to stimuli. It therefore
seems probable that while small increases in the theta-
gamma ratio are indicative of successful learning, very
large increases are more likely to reflect learning
impairment.
We have found no evidence to support a key role for

resetting of theta phase in cortical information proces-
sing contrary to some previous studies [1,15,16]. The
virtual absence of phase resetting supports the notion
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that event-related potentials are not generated by the
phase resetting of oscillatory activity as has been pro-
posed [28]. A previous study has also failed to find evi-
dence for phase-resetting by visual stimuli [29]. An
obvious role for phase resetting by an external stimulus
is to synchronize oscillations across a wide network;
however in our IT recordings we always found very high
levels of synchronization in ongoing theta activity, so
there would have been no real advantage in this respect
if learning had resulted in stronger phase resetting.
The lack of any alteration in the amplitude of gamma

oscillations following learning is in-line with our failure
to find any change in stimulus-evoked neuronal firing
rates in the IT following learning. Indeed, previous
research in monkeys has also failed to find evidence for
reward-associated learning changes in firing rates of
individual IT neurons [30] and there is evidence in both
sheep [20] and monkey [31] IT for population-based
encoding. There was also no evidence for learning
effects on latencies or magnitudes of the P100 and
N300 components of the VEP in IT so VEP changes are
unlikely to have contributed to any learning effects on
phase locking [16]. There was some indication that the
magnitude of the P100 was increased in response to
upright face pairs compared to inverted face pairs or
upright non-face objects. This latter observation is simi-
lar to the face sensitive P100 in humans [32,33] and the
N170 component in monkeys [34] and humans [35].
Some studies have reported increased magnitude of var-
ious VEP components as a function of face familiarity
[34,36,37], and in response to visual tetanic stimulation
[38], although not in the context of learning visual dis-
crimination between pairs of objects used in the current
study.
No differential learning effects were observed

between the two brain hemispheres in the MUA and
LFP parameters measured in current study. However,
we have also analysed our LFP data using novel causal-
ity algorithm approaches and shown that learning
reduces the strength of causal connections from the
left to the right IT and increases the frequency of cau-
sal connections within the right IT [39]. This increased
connectivity may partly explain our observation here
that only the right IT shows significant strengthening
of the regularity of theta phase following learning. It is
notable in this context too that in general the right IT
showed significantly higher levels of theta synchroniza-
tion than the left.
The presence of phase-locking between theta and

MUA in the IT is in agreement with a recent study in
humans [21] and phase locking has been reported in
other neocortical areas in monkeys [4]. There was also a
tendency for this to increase in IT following learning
and a recent study has reported increased phase locking

of neuronal activity with theta in human temporal lobe
neurons after learning [40]. The presence of extensive
phase locking between theta and neuronal spiking activ-
ity in the IT provides a potential mechanism whereby
altered theta activity following learning could modulate
neuronal firing to produce the desynchronization effects
we have observed.
Although increased theta amplitude and theta gamma

coupling might have been expected to lead to tighter
control and greater synchronization in neuronal firing
our model shows this is not the case. Indeed, a recent
study on visual cortex neurons has also reported visual
stimulus-evoked decorrelation [41]. The large changes
in theta activity observed would act to modulate the fir-
ing thresholds of the output neurons cells across the
network. This would inevitably increase the variability in
theta activity across the network leading to a wider
range of firing thresholds and neurons being less likely
to fire synchronously. This is supported by our model
and IT findings showing that neural spike activity is
more spread out in time during theta waves in the sti-
mulus period following learning.
The prediction from our model that increased desyn-

chronization in IT output neurons would enhance
responses by downstream target neurons might also
seem counter-intuitive. However, the more synchronized
are the outputs from excitatory neurons converging
onto a downstream neuron, the more information can
potentially be lost as more excitatory post synaptic
potentials (EPSPs) are generated than are necessary to
cause the downstream neuron to fire. Where EPSPs
generated are more separated in time they are less likely
to be rendered impotent by refractory period limitations
and contribute more efficiently towards eliciting
responses by the downstream neuron. Spreading the
temporal pattern of inputs reaching the downstream
neuron would also enhance the information content of
the inputs it is required to decode
It would clearly be difficult to test the above model

prediction directly in vivo without being able to make
simultaneous recordings from multiple connected neu-
rons in say IT and the frontal cortex. However, our
combined in vivo and model simulation findings do pro-
vide a mechanism for how learning induced changes in
theta amplitude and theta-nested gamma could modu-
late temporal aspects of neuronal firing in neocortical
networks such that downstream networks exhibit poten-
tiated responses even in the absence of altered firing fre-
quencies arriving from neuronal inputs.

Conclusions
Face discrimination learning produces significant
increases in the magnitude of theta amplitude and the
theta-gamma ratio and the strength of theta-gamma
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coupling in the inferotemporal cortex. Importantly these
changes are all significantly correlated with actual beha-
vioral performance and theta amplitude and theta-
gamma coupling changes appear to occur independently.
Interestingly, learning did not produce significant
changes in IT neuronal firing frequencies although neu-
ronal firing was often coupled to theta-phase. The net-
work model which we have developed to reproduce
these changes suggests that a key function of such learn-
ing-evoked changes in theta amplitude, the theta-gamma
ratio and theta-gamma coupling may be to increase
temporal desynchronization in neuronal firing leading to
optimal timing of inputs to downstream neural networks
and thereby potentiating their responses. The model’s
efficacy was supported by the fact that this temporal
desynchronization was confirmed in our IT recordings
following learning. An important functional conse-
quence of the learning evoked changes in theta and
gamma we have found in may therefore be to potentiate
responses by neurons in IT projection regions to learned
visual stimuli through a slight temporal desynchroniza-
tion of firing by IT output neurons.

Methods
Animals and visual discrimination training
Three female sheep were used (Ovis aries, one Clun
Forest and two Dorsets). The animals were trained initi-
ally over several months to perform operant-based face
(sheep) or non-face (objects) discrimination tasks with a
choice being made between two simultaneously pre-
sented pictures (side by side) only one of which was
associated with a food reward. The position (left or
right) of the rewarded picture was randomised in each
trial. During stimulus presentations animals stood in a
holding trolley and indicated their choice of picture by
pressing one of two touch panels located in the front of
the trolley with their nose. For correct responses the
food reward was delivered automatically to a hopper
between the two panels. The life-sized pictures were
back projected onto a screen 0.5 m in front of the ani-
mal using a computer data projector. A white fixation
spot on a black background was presented constantly in
between trials to maintain attention and experimenters
waited until the animals viewed this spot before trigger-
ing presentation of the image pairs (since sheep don’t
have extensive eye movements monitoring head position
is generally sufficient to establish gaze direction). The
stimulus images remained in view until the animal made
an operant response (generally around 1-3 s). In each
case successful learning of a face or object pair required
that a performance criterion of > 80% correct choice
over blocks of 20-40 presentation trials was achieved
consistently (Chi-square, p = 0.05 for 20 trials and 0.01
for 40 trials). By the end of training animals were

normally able to reach the > 80% correct criterion after
40-80 learning trials and to maintain this performance
although in a few cases learning did not occur even
after 80-140 trials. Some previously learned stimulus
pairs (over periods ranging from 10 days to 9 months)
were also presented during subsequent electrophysiolo-
gical recording experiments although the animals were
mainly presented with novel stimulus pairs and neuro-
physiological parameters recorded before and after the
learning criterion was achieved.
For each sheep recordings were made in response to

up to 10 different face or non face object pairs (Sheep
A: 5 novel face and 1 novel object pair; B 7 novel face
pairs, 3 previously learned face pairs and one previously
learned object pair; Sheep C: 2 novel face pairs and 2
previously learned face pairs. In addition following
learning effects of image inversion were recorded for
one face pair in both Sheep A and Sheep B to assess
whether any components of the VEP were sensitive to
upright faces. Learning effects were monitored over
between 80-189 trials and data was collected over blocks
of 20-40 trials. For the face pairs Sheep A and B were
discriminating between the faces of different socially
familiar or unfamiliar individuals (face identity discrimi-
nation) whereas for Sheep C discrimination was between
calm and stressed face expressions in the same animal
(n = 3 pairs) or in different animals (n = 1 pair). With
this latter animal the calm face was the rewarded stimu-
lus. Where novel face or object pairs were being learned
during recordings the > 80% performance criterion was
normally achieved in 20-80 training trials. The face and
object pairs used for each of the 3 sheep are shown in
Additional file 1, Figure S1.
All animal experiments were performed in strict

accordance with the UK 1986 Animals Scientific Proce-
dures Act (including approval by the Babraham Institute
Animal Welfare and Ethics Committee) and during
them the animals were housed inside in individual pens
and able to see and communicate with each other. Food
and water were available ad libitum. Post-surgery all
animals received both post-operative analgesia treatment
to minimise discomfort and antibiotic treatment to pre-
vent any possibility of infection.

Electrophysiological recordings and analyses of local field
potentials (LFPs) and multiunit activity (MUA) in IT
Surgical preparation
Following initial behavioral training sheep were surgi-
cally implanted under general anesthesia (fluothane) and
full aseptic conditions with either unilateral (one animal)
or bilateral planar 64-electrode (for configuration see
Additional file 1, Figure S6A) arrays (epoxylite coated,
etched, tungsten wires with 250 μm spacing - total array
area ~2 mm × 2 mm, electrode impedance ~0.2 MΩ,
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tip diameter ~ 1 μm, tip exposure length ~100 um)
aimed at the IT. The electrode lengths varied by ~1 mm
and so this combined with the tip exposure electrodes
would have been recording activity across all cortical
layers. Holes (0.7 cm diameter) were trephined in the
skull and the dura beneath cut and reflected. Electrode
arrays were placed 18-20 mm lateral to the midline, 35
mm posterior to the tip of the frontal pole and at a
depth of 20-22 mm from the brain surface using a
stereotaxic micromanipulator. Electrode depths and pla-
cements were calculated with reference to X-rays, as
previously described [42]. They were fixed in place with
dental acrylic and stainless-steel screws attached to the
skull. Two of these screws acted as reference electrodes,
one for each array. Electrodes were connected to 34 pin
female plugs (2 per array) also cemented in place on top
of the skull.
LFP and MUA recording protocols
Starting 3 weeks after surgery the electrodes were con-
nected via male plugs and ribbon cables to a 128 channel
electrophysiological recording system (Cerebus 128 Data
Acquisition System - Blackrock Microsystems, USA) and
recordings made during performance of the different face
and non-face pair operant discrimination tasks. This sys-
tem allowed simultaneous recordings of both neuronal
spike and local event-related (LFP) activity from each
electrode. Typically, individual recording sessions lasted
around 30 min and animals were presented with 2-6
blocks of 20-40 trials. There was at least a week between
individual recording sessions in each animal.
The LFPs were sampled at 2 kHz and MUA spikes at

30 kHz (bandpass 0.3 Hz - 7.5KHz) and digitized for
storage from ~3 seconds prior to the stimulus onset to
~3 seconds after the stimulus onset (stimulus durations
were generally 1-3 s). Neural recordings from our data
acquisition system consisted of two distinct large raw
data files, one for the LFP and the other for the MUA.
We used custom Spike 2 (Cambridge Electronic Design,
Cambridge, UK) scripts to translate these into text files
arranged either by trial or electrode prior to further
analysis.
LFP data contaminated with noise artefacts, such as

from animal chewing food, were excluded as were LFPs
with unexpectedly high power. For LFPs, data were ana-
lyzed during a period of 1 second before and 1 second
after stimulus onset. Trend was removed before spectral
analysis. Any trials having more than 5 points outside
the mean ± 5 standard deviation range were discarded
before the analysis. The LFPs and MUA responses were
all aligned to the onset of the visual stimuli. All analyses
were carried out using custom written routines in
Matlab (The Mathworks Inc, Natick, MA). Use of cus-
tom spike-sorting software revealed that 1-4 single

neurons were contributing to the MUA at each elec-
trode [43].
At the end of the experiments animals were eutha-

nized with an intravenous injection of sodium pentobar-
bitone and the brains removed for subsequent
histological confirmation of X-rays that array place-
ments were within the IT cortex region. The general
region where electrodes were located within the IT of
these animals is also shown in [39].
Time dependent spectrum analysis
To extract spectral content relating to time, we used a
wavelet transform to disclose the time-dependent spec-
trum of the LFP data. The wavelet transform convolves
the LFPx(t) with a mother wavelet ψ(t) [44]:

CWTx(t, f ) =

√
f
f0

∫ ∞
−∞ x(τ )ψ∗(

τ − t
f0

f )dτ

Here we use Morlet wavelet f0 = 0.849 defined as:

ψ(f ) = π1/4
√
2 exp{−1

2
(2π f − 2π f0)2}

where f0 is the central frequency of the wavelet. If the
choice of f0 is appropriate the second term in the
bracket, which is known as the correction term,
becomes negligible, thus giving a simple Morlet wavelet:

ψ(t) =
1

π1/4
exp{j2π f0t} exp{−t2/2}

This expression shows that Morlet wavelet is a com-
plex sine wave within a Gaussian envelope. The Fourier
transform of the Morlet wavelet is:

ψ(f ) = π1/4
√
2 exp{−1

2
(2π f − 2π f0)2}

which has the form of a Gaussian function centred at
f0, where f0 determines the wave numbers within the
envelope. Here f0 = 0.849 (around 5.3 wave numbers)
and this gives a real part where the peaks next to the
central peak are half its amplitude.
The wavelet transform was applied to each individual

LFP trial at each electrode (for a period of 1 s either
side of stimulus onset) and a final time-dependent spec-
trum estimated as the trial-averaged scalograms (modu-
lus square of the wavelet transform). When comparing
pre- and during stimulus theta band activity we used
the amplitude of the wavelet transform at 4-8 Hz and
averaged it across this band. For the gamma band,
amplitude in the 30-70 Hz frequency range was ana-
lysed. Theta and gamma power were also calculated,
although in our freely behaving animals we found the
amplitude measure to be less variable across trials and
sessions whereas power was susceptible to abrupt
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changes making comparisons more difficult. To deter-
mine the significance of responsiveness at each electrode
a post-hoc t-test (with Benjamini-Hochberg correction)
was used to compare the amplitude of the wavelet trans-
form in the 500 ms pre- with the 500 ms during-stimu-
lus periods. Amplitude changes evoked by learning were
normalized by subtracting the amplitude value of the
pre-stimulus period and dividing by the maximal value
for each electrode. The theta/gamma ratio was also cal-
culated as the direct ratio between the theta amplitude
and gamma amplitude (or theta power and gamma
power).
Cross-frequency coupling between theta and gamma
We used coherence analysis to measure the dependency
between the signals in the two different frequency
bands. This coherence analysis detected the modulation
between amplitude and phase of the two band-limited
signals in each frequency band. To do this we separated
the raw signal into two sets of band-pass filtered signals
[11]. The first set had frequencies from 30 Hz to 70 Hz,
in 2 Hz steps with a 1 Hz bandwidth. This created a
real-value band-pass filtered signal set{xamplitude(t)} in which
we could extract the amplitude signal used for the
gamma band. The second set of real-value band-pass fil-
tered signals {xphase(t)} was created by filtering the raw sig-
nal with centre frequencies from 2 Hz to 20 Hz, in 1 Hz
steps with a 1 Hz bandwidth. This set was used to
extract the phase signal for the theta band. The ampli-
tude and phase signals were then extracted by applying
a Hilbert Transform to both sets to generate complex-
valued analytic band-passed signals, i.e. {xamplitude(t)} was
taken to create a set of analytic amplitude time series
{A(t)} and the phase set {xphase(t)} was extracted to create a
set of analytic phase time series {�(t)}. Using both the
amplitude and phase signals the coherence CAi(t)ϕ j(t)(f )
between i-th amplitude signal A(t) and j-th phase signal
�(t) was calculated by:

CAi(t)ϕ j(t)(f ) =

∣∣∣∣ SAi(t)ϕ j(t)(f )

SAi(t)Ai(t)(f )Sϕ ji(t)ϕ jj(t)(f )

∣∣∣∣
where SAi(t)Ai(t)(f ) and Sϕ ji(t)ϕ jj(t)(f ) are the auto-spec-

tra for the i-th A(t) and j-th �(t) and SAi(t)ϕ j(t)(f ) the
cross-spectrum between them. The confidence interval
for the coherence [45] is given by:

1 − α1/(K−1)

where a is the significant level (e.g. a = 0.01) and K is
the trial number which corresponds to the disjointed
number of periodograms. The phase-locking index was
then measured by the coherence in the range between 0
and 1, where values close to 1 indicate a strong cross-
frequency modulation. A coherence calculation was
obtained at all the pair-wise frequency combinations

between the two bands and a Bonferroni correction
applied to the multiple comparisons over all the fre-
quency pairs.
We confirmed that this coherence method accurately

determined the extent to which gamma amplitude
changes were locked to theta phase using artificial data.
We generated one theta wave and gamma wave and
nested (added) them together using two sine waves of 5
Hz and 50 Hz which were linearly mixed. The gamma
frequency sine wave (50 Hz) had an amplitude 1/5th of
the theta frequency wave (5 Hz). Using a trial length of
500 ms, 30 trials were generated with a sampling fre-
quency of 1 kHz. White noise was then added to the
mixed sine waves with a signal to noise ratio equal to -5
dB. The coherence between the theta phase and gamma
amplitude was maximal when gamma was nested
directly on top of theta (Additional file 1, Figure S3)
confirming that our coherence measure reliably mea-
sures the strength of coupling between theta phase and
gamma amplitude. However in view of recent debates
over the relative merits of different methods for measur-
ing coupling between theta phase and gamma amplitude
in electrophysiological data we additionally used the
mean vector length [11] and the modulation index [13]
approaches for our IT data and these produced similar
results to those obtained with our coherence method.
For IT recordings, theta-gamma coupling analysis was

performed for all the electrodes and at each electrode
the theta/gamma values were calculated for all the pairs
in the theta and gamma band. In the majority of cases
40 trials were analysed in each session. Where more
than 40 trials were recorded only the first 40 were ana-
lysed and where less than 40 trials occurred the coher-
ence was normalised to match that for 40 trials to avoid
any bias due to differential numbers.
Theta phase reset
Since a complex Morlet wavelet was used to compute
the time-dependent spectrum of the LFP, the wavelet
transform also provided phase information in the time-
frequency domain. We therefore took out the angle of
the complex wavelet transform as the instantaneous
phase of LFP at each frequency. For a given trial k at
time t the phase time series �k(t) were obtained by wave-
let-transforming the LFP in trial k. If an electrode exhib-
ited phase-locking across N trials the distribution of
phase should depart from uniformity and this could be
tested by a Rayleigh statistic [16,46]:

R(t) =
1
N

√√√√√
[

N∑
k=1

cos ϕk(t)

]2

+

[
N∑
k=1

sin ϕk(t)

]2

Therefore the hypothesis of uniformity could be
rejected at a certain significance level if phase-locking
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was found for that electrode. The Z-score for the Ray-
leigh statistic is given as Z = NR2.
To determine if theta band waves exhibited phase-

resetting with a locked phase over trials, we calculated
the Z -scores as a function of time in the during-stimu-
lus range across all trials. An electrode recording was
considered to be exhibiting phase-locking if all the sam-
ples from the time of stimulus onset at a given fre-
quency (4 - 8 Hz) passed the criterion of the Rayleigh
test (p < 0.01) across two full oscillatory cycles. A com-
parison was made across all the electrodes in a record-
ing array and a Bonferroni correction applied to
compensate for type-I errors.
Theta phase synchronization
To assess whether there was synchronization of the LFP
phases, the Rayleigh statistic was also used to calculate a
Z-score across all electrodes. In each trial the Z-score
for theta phase (4-8 Hz) was calculated for each time
point in the 500 ms pre- and the 500 ms during-stimu-
lus periods. If > 80% of all time points across the entire
1 s period showed significant phase-locking (p < 0.05),
then LFPs were considered to be synchronized in that
trial. For bilateral recordings, the left and right hemi-
spheres were analysed separately.
Theta phase-tightening
We calculated the Z-scores for LFP phases in 500 ms
pre-stimulus and 500 ms during stimulus periods across
all the electrodes in the recording array. If the Z-score
was significantly higher (t test, p < 0.05) in the during-
stimulus period than in the pre-stimulus period then the
phase was considered to be tightened. We used the per-
cent change from the pre- to during-stimulus period to
measure altered phase tightening.
Visual evoked potential (VEP)
The VEP was extracted from the LFPs by trial-averaging
after aligning the data to stimulus onset. Two major
peaks were identified from the VEP in the initial 500 ms
of stimulus presentation: a positive peak at ~100 ms
(P100) and a negative peak at ~300 ms (N300). We calcu-
lated the latency for these two peaks by finding the time
corresponding to the maximum and minimum peak
value respectively. The amplitudes of these two peaks
were calculated as their peak values after subtracting the
average baseline in the 100 ms before stimulus onset.
MUA phase-locking with theta and firing rates
For the analysis of MUA data a Gaussian kernel with
width of 30 ms was convolved to the neuronal spike
train. We used the maximum peak value in the initial
500 ms of stimulus presentation to characterise MUA
response latency. To calculate phase-locking of MUA on
each channel to theta, the same LFP phase data at theta
band were used as in the analysis of theta phase-reset.
At each given frequency from 4-8 Hz, (at 1 Hz intervals)

a total length of 2 s (1 s before stimulus and 1 s after
stimulus) recording data was used for both LFP and
MUA. LFP phases corresponding to the MUA spike
time data across all the trials were then tested for ana-
lysed for whether they passed the criterion of the Ray-
leigh test (p < 0.05). Where they did so, this showed the
distribution of phase values was not uniform at that par-
ticular electrode and frequency and that there was sig-
nificant phase-locking between MUA and the theta
band wave.
For firing rate changes associated with a stimulus and

overall calculation was made for each channel in each
block of trials (1s before vs 1 s during a stimulus).
Recording channels were also sub-divided into those
showing an overall increase (excited) or decrease (inhib-
ited) in firing rate during the stimulus.
MUA synchronization index
We measured synchronization in MUA data by counting
the spikes within a brief time window (bin width, 2.5-10
ms). This is similar to a peri-stimulus time histogram
(PSTH) over all MUA channels. In each trial we pro-
duced a PSTH over all the MUA channels and normal-
ized it by the sum of the counts in all PSTH bins. If
synchronization occurred in a certain time bin there
should be a high spike count for that bin. Normalization
was carried out to ensure that the influence of differen-
tial firing rates was removed. We then defined a MUA
synchronization index as the sum of all the normalized
spike counts which exceed half of the maximum value.
We calculated the synchronization index choosing a bin
width of 5 ms although we also used bin sizes of 2.5 ms
and 10 ms and similar trends were observed.
The synchronization index was based on the following.

Suppose that the total time T is divided into small time
bins τ(T/τ = TN), and that R spike trains are given by
Xik = 0 (there is no spike) or 1 (there is at least one
spike), i = 1,2,..., R, k = 1, ..., TN. We can then define:

Zk =

∑
i
Xik

NR∑
i=1

TN∑
k=1

Xik

,

If we then find those Zkl , l = 1, · · · ,M (M < TN), that
are larger than max(Zk/2), then the synchronization
index a can be defined as:

α =
M∑
l=1

Zkl

/
M

Statistics
These were performed at both the population and indi-
vidual animal level. For each parameter measured 2-way
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ANOVAs (animals and learning as factors) were first
carried out for the 3 animals where recordings were
made in the right IT and the 2 animals in the left IT.
To test for hemisphere differences 3-way ANOVAs (ani-
mals, learning and hemisphere as factors) were con-
ducted. In all cases where data for a particular
parameter failed the Shapiro-Wilks normality test an
additional permutation analysis was carried out using
1000 replacements. Additionally, analyses within animals
were carried out using t-tests corrected for multiple
comparisons. Correlations between electrophysiological
parameters and behavioral performance were carried out
using Pearson tests.

Network model
We constructed an excitatory-inhibitory network com-
prising three populations of neurons: 100 excitatory
(pyramidal) neurons, 50 inhibitory fast (inter) neurons
and 50 inhibitory slow (inter)neurons. Similar models
using fast and slow GABAA kinetics have been investi-
gated for hippocampal neurons [25]. The size of the
network chosen was based on the number of neurons
typically recorded by our array electrodes. Each set of
neurons obeys the following integrate and fire equa-
tion:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ce
dVi

e

dt
= −geL(Vi

e − VeL) − Iie,syn + Iie + Iiapp,

i = 1, · · · , 100

CI

dVj
If

dt
= −gIL(V

j
If − VIL) − IjIf ,syn + IjIf ,

j = 1, · · · , 50

CI
dVk

Is

dt
= −gIL(Vk

Is − VIL) − IkIs,syn + IkIs,

k = 1, · · · , 50
where Ce, CI are the capacitances for excitatory and

inhibitory neurons, and Ie, IIf and IIs represent the back-
ground currents for these three kinds of neurons,
excitatory neurons(EX), fast inhibitory neurons (INf)
and slow inhibitory neurons (INs). Iapp is the external
input. In the model, we assume that the initial condi-
tions of all neurons are random and the connections
are all-to-all. Each cell receives AMPA and NMDA
receptor mediated currents from excitatory pyramidal
cells, and GABAA receptor mediated currents from
INf neurons and INs neurons. The only exception is
that INs neurons do not receive inputs from INf ones.
Thus the synaptic inputs have the following general
forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iie,syn = IiAMee + IiNMee + IiGAfe + IiGAse

=
100∑
m=1

−
gAMees

m
AM(V

i
E − Ee) +

100∑
m=1

−
gNMeeB(Vi

E)s
m
NM(V

i
E − Ee)

+
50∑
m=1

−
gGAfes

m
GA,f (V

i
E − EI) +

50∑
m=1

−
gGAsesmGA,s(V

i
E − EI)

IJif ,syn = IjAMef + IjNMef + IjGAff + IjGAsf

=
100∑
m=1

−
gAMef s

m
AM(V

j
E − Ee) +

100∑
m=1

−
gNMefB(V

j
If )s

m
NM(V

j
If − Ee)

+
50∑
m=1

−
gGAff s

m
GA,f (V

j
If − EI) +

50∑
m=1

−
gGAsf s

m
GA,s(V

j
If − EI)

IkIs,syn = IkAMes + IkNMes + IkGAss

=
100∑
m=1

−
gAMess

m
AM(V

k
Is − Ee) +

100∑
m=1

−
gNMesB(Vk

Is)s
m
NM(V

k
Is − Ee)

+
50∑
m=1

−
gGAsss

m
GA,s(V

k
Is − EI)

in which Ee, EI are reverse potentials of excitatory and
inhibitory neurons, respectively; ḡAMek, ḡNMek, ḡGAkl (k,l =
e,f,s) are maximal channel conductances for AMPA,
NMDA and GABAA receptors, respectively. An action
potential is discharged when the membrane potential
reaches a firing voltage threshold Vth. Then the mem-
brane potential is reset to Vreset and stays there for an
absolute refractory period τref. For EX cells, the para-
meters in the model are Vth = -52 mV, Vreset = -59 mV, τref

= 2 ms, Ce = 0.5 nF, geL = 0.025μS, VeL = -70 mV, the
excitatory reverse potential Ee = 0 mV. For inhibitory
cells, we set Vth = -52 mV, Vreset = -60 mV, VIL = -65 mV,
CI = 0.2 nF, gIL = 0.02μS. The refractory time τref = 1 ms.
B(V) represents the magnesium block depending on the
relevant potential and it is calculated as B(V) = 1/[1 +
exp(-0.062V)/3.57]. The inhibitory reverse potential EI =
-70 mV. The gating variables smAM and smNM are described
by two first-order kinetics [47]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt

= αx,l

∑
j

δ(t − tj) − x/τx,l

dsml
dt

= αs,lx(1 − sml ) − sml /τs,l

with l = AM,NM where tj is the presynaptic spike
time. For channel parameters, we use ax,AM = 1 (in dimen-

sionless), τ
x,AM

= 0.05 msec, a
s,AM

= 1.0 msec-1 τs,AM = 2.0 msec
for AMPA receptors, and ax,NM = 1 (in dimensionless), τ

x,NM
=
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2 msec a
s,NM

= 1.0 msec-1 τs,NM = 80 msec for NMDA
receptors. The inhibitory postsynaptic current (IPSP)
from slow and fast interneurons is mediated by the
GABAA receptor. The gating variables smGA,f and smGA,s
obey simple first-order kinetics [48]:

dsmGA,l
dt

= αI,l

∑
j

δ(t − t−j )(1 − smGA,l) − smGA,l/τI,l,

l = f , s

Here the superscript in t−j indicates that the increment
of smGA,l by a spike should be calculated using the value
of smGA,l immediately before the spike on the right hand
side of the equation:

�smGA,l = smGA,l(t
+
j ) − smGA,l(t

−
j ) = αI,l(1 − smGA,l(t

−
j )),

l = f , s

For the fast GABAA channel, we chose τI,f = 9 ms and
aI,f = 1 ms-1. For the slow GABAA channel, τI,s = 50 ms
and aI,s = 0.2 ms-1. In the simulation, spikes in all presy-
naptic neurons are connected to a convergent neuron.
For the background current of EX cells, we set
Iie = 0.7 + ξi(t), (i = 1, · · · , 100) where ξi(t) is white noise
with variance se = 0.01. For inhibitory cells, we set the
background currents fixed and homogenous,

IjIf = 0.85, (j = 1, · · · , 50) for INf cells, and

IkIs = 0.6, (k = 1, · · · , 50) for INs cells.
Parameters and analytical methods used in application of
the model
To generate post learning effects the following coeffi-
cient values were used for the different sites of AMPA
(AM), NMDA (NM) and GABAA (GA) receptors (e =
excitatory neuron, s = slow inhibitory neuron and f =
fast inhibitory neuron): AMee = 0.02; AMef = 0.08;
AMes = 0.0005; NMee = 0.0035; NMef = 0.001; NMes
= 0.00055; GAff & GAss = 0.08; GAfe = 0.015; GAse =
0.06; GAsf = 0.03. For pre-learning only the values of
two NMDA receptor coefficients were reduced: NMee
to 0.002 and NMes to 0.0001. For parameters that gen-
erated different theta/gamma patterns (Figure 7), the
shallow nested gamma was generated using the post
learning parameters above. The parameters for deep
nested gamma were the same as the shallow nested case
except that GAfe = 0.045. The minimal gamma used the
same parameters as the shallow nested gamma except
that GAse and GAsf = 0.12. All the methods for calcu-
lating theta/gamma parameters were the same as for the
data from IT recordings.

Additional material

Additional file 1: Figure S1. Face and object stimulus pairs used in
each of the three sheep.Title: Figure S2.Description: Theta and gamma
power during a stimulus.Title: Figure S3.Description: Theta phase/gamma
amplitude coupling of simulated data.Title: Figure S4.Description:
Averaged visual evoked potentials (VEPs) from IT recordings.Title: Figure
S5.Description: Examples of IT MUA phase locking to theta.Title: Figure
S6.Description: Latency and duration of theta amplitude increase in IT
and network model.Title: Figure S7.Description: Synchronized theta waves
across IT recording arrays and in the network modelTitle: Figure S8.
Description: Tightening of theta phase during a stimulus after learning in
IT and network modelTitle: Figure S9.Description: Model simulations
showing increased theta-gamma coherence independent of increased
theta amplitude.Title: Figure S10.Description: IT neuronal spike activity
during theta waves and correlation between altered synchronization and
behavior following learning.
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