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Neuronal circuits or cell assemblies carry out brain
function through complex coordinated firing patterns
[1]. Inferring topology of neuronal circuits from simulta-
neously recorded spike train data is a challenging pro-
blem in neuroscience. In this work we present a new
class of dynamic Bayesian networks to infer polysynaptic
excitatory connectivity between spiking cortical neurons
[2]. The emphasis on excitatory networks allows us to
learn connectivity models by exploiting fast data mining
algorithms. Specifically, we show that frequent episodes
help identify nodes with high mutual information rela-
tionships and can be summarized into a dynamic Baye-
sian network (DBN).
We model the spike train data as binary random vari-

ables and learn high mutual information parent sets of
neurons that excite the spiking of down-stream neurons
at variable delays. Thus we can express the probability
of spiking of each neuron conditioned on the activity of
a subset of relevant neurons in recent past (or history

window). We formally establish a connection between
efficient frequent episode mining algorithms (used to
indentify frequently repeating patterns of spiking activity
[3]) and learning probabilistic models for excitatory con-
nections. This framework is depicted in Figure 1.
We demonstrate the effectiveness of our method in dis-

covering connectivity information on synthetic and real
datasets. Our synthetic data generation models each neu-
ron as an inhomogeneous Poisson process whose firing
rate is modulated by the input received by the neuron in
recent past. The network inter-connect allows us to model
complex higher-order interactions. We also demonstrate
the application of our method on multi-electrode arrays
recordings from dissociated cortical cultures gathered by
Steve Potter’s laboratory at Georgia Tech [4].

Conclusion
Existing data analysis tools like cross-correlograms,
JPSTH and PCA do not scale well as we look at several
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Figure 1 A multi-electrode array (MEA; left) produces a stream of action potentials (middle). Mining frequent episodes of firing in simultaneously
recorded multiple-spike train data uncovers excitatory circuits (right).
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neurons at a time. Our approach provides an efficient
and formal basis for learning probabilistic models from
observed spike train data. Several types of network
dynamics like syn-fire chains, polychrony [5] etc. that
neuronal networks are known to exhibit can be modeled
as excitatory networks and hence their putative struc-
ture can be learnt using our method (as illustrated in
Figure 2). Our proposed approach also scales very well
to large data sizes as it marries fast data mining style
algorithms with formal model learning.

Author details
1Computer Science Department, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24060, USA. 2Microsoft Research, Bangalore,
Karnataka 560080, India.

Published: 20 July 2010

References
1. Abeles M, Gerstein GL: Detecting spatiotemporal firing patterns among

simultaneously recorded single neurons. J Neurophysiol 1988,
60(3):909-924.

2. Patnaik D, Laxman S, Ramakrishnan N: Discovering excitatory networks
from discrete event streams with applications to neuronal spike train
analysis. Proc. of IEEE Intl. Conf. Data Mining, ICDM 2009.

3. Patnaik D, Sastry PS, Unnikrishnan KP: Inferring neuronal network
connectivity from spike data: A temporal data mining approach. Scientific
Programming 2007, 16(1):49-77.

4. Wagenaar DA, Pine J, Potter SM: An extremely rich repertoire of bursting
patterns during the development of cortical cultures. BMC Neuroscience 2006.

5. Izhikevich EM: Polychronization: Computation with spikes. Neural Comput.
2006, 18(2):245-282.

doi:10.1186/1471-2202-11-S1-P171
Cite this article as: Patnaik et al.: Learning probabilistic models of
connectivity from multiple spike train data. BMC Neuroscience 2010
11(Suppl 1):P171.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Figure 2 Dynamic Bayesian Network models for Syn-fire chains (left)
and Polychronous circuits (right).
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