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The introduction of the efficient coding hypothesis by
Barlow in 1961 marked the beginning of a detailed inves-
tigation into how neurons could adapt their receptive
field (RF) profiles to represent their external sensory
environment more efficiently. The efficiency of the neural
code was originally studied in the context of a single neu-
ron, primarily with respect to the amount of information
that could be sent from a single cell across an axonal
communication channel. With the development of tech-
niques to examine the activity of multiple neurons in
intact neural circuits, our view of information processing
in sensory systems has shifted from a neuron-centric
view to a network-centric one. The sparse coding
hypothesis attempts to describe how efficient coding can
be performed at the network level. In sparse coding mod-
els, a network’s representation is deemed efficient if the
number of neurons that are active within a population is
small relative to the size of the population.

Mounting evidence shows that sensory systems
employ sparse population coding, both in experimental
[1] and computational modeling [2] studies. While these
studies have focused on testing the sparse coding
hypothesis with respect to the development of RF pro-
files in different sensory environments, predictions of
information processing in mature neural sparse coding
circuits have yet to be studied in detail, let alone tested
experimentally. To determine relevant predictions of
sparse coding models for mature neural circuits, we
began by studying current neurally plausible models for
sparse coding [3],4 that employ a number of processes
known to take place within cortical networks, including
recurrent inhibition, stimulus-driven excitation, and
thresholding of each cell’s membrane potential. These
models also predict that in order to perform sparse
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approximation across a network of neurons, the strength
of inhibition amongst any pair of neurons is given by
the coherence between the RF profiles of the pre- and
post-synaptic cell. This implies that as a cell’s RF profile
changes over time, the cell would need to alert all inter-
neurons that synapse onto excitatory cells with overlap-
ping receptive fields of the precise changes in its RF
profile. Furthermore, predictions made about the spatial
arrangement of cells differ from observations of the spa-
tial organization of cells in the cortex.

To move towards a more biologically accurate model
for sparse coding in sensory systems, we incorporated a
simple Hebbian learning rule into the locally competi-
tive sparse coding model described in [3]. We found
that as connections are strengthened amongst all the
cells that become active in response to a given stimuli,
the networks that emerge exhibit modularity (akin to
columnar architectures) and small-world topologies
(high clustering with small average path length), both of
which have been observed in networks in the cortex.
Using this model, we go on to show that under certain
assumptions, orientation maps emerge. In addition to
suggesting that sparse coding must be refined to incor-
porate stimulus-dependent plasticity, our results suggest
that analyzing the structure of the coherence amongst
the RFs of neighboring neurons should enable a more
principled investigation of the sparse coding hypothesis
in intact mature neural circuits.
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