

POSTER PRESENTATION

Open Access

Calcium-dependent subthreshold fluctuations in membrane voltage; a modeling study

David A Stanley^{1,2}, Berj L Bardakjian^{2*}, Mark L Spano³, William L Ditto¹

From Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San Antonio, TX, USA. 24-30 July 2010

Membrane potential noise plays multiple functional roles in the nervous system, as described in the review by Faisal $et\ al\ [1]$. Calcium-dependent potassium (K_{Ca}) channels are ion channels whose conductance depends on intracellular calcium concentration. Previous work by Diba $et\ al$ suggests that such channels play a central role in subthreshold voltage noise [2]. While most channels generate noise through their inherent thermal fluctuations, we hypothesize that K_{Ca} channels also generate low-frequency subthreshold oscillations by transmitting stochastic fluctuations in intracellular calcium.

Methods

We have produced a stochastic computer model that incorporates K_{Ca} channels and calcium dynamics into a

Figure 1 Relationship between intracellular calcium and membrane voltage. Intracellular calcium (blue, arb units) is inverted and scaled to show anti-correlation with membrane voltage (green). (Correlation coefficient -56.4%, Vm phase lag ~600ms, Traub model default parameters.)

CA3 pyramidal neuron, which is based on the biophysically realistic Traub model [3]. To introduce channel noise, we replaced all Hodgkin-Huxley (HH) channels with equivalent Markov models [4]. There is also an intracellular calcium pool, with Ca²⁺ levels that vary stochastically due to influx through Markovian calcium channels.

Results

Preliminary simulation results show that, for the default parameters used by Traub, there is anti-correlation between intracellular calcium and membrane voltage (Figure 1); this suggests intracellular calcium fluctuations may partially drive low-frequency voltage noise.

Figure 2 Power spectral density for stochastic I_{AHP} current Black trace is simulation under default settings. Red trace shows the effects of clamping intracellular calcium, which reduces low-frequency power. Green trace shows the I_{AHP} current when inherent thermal fluctuations are removed by switching channel dynamics from Markov to HH. The crossover of these two signals suggests that intracellular calcium fluctuations can contribute to low-frequency voltage noise.

^{*} Correspondence: berj@cbl.utoronto.ca

²Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada, M5S 3G9

Additional modeling has implicated the ${\rm Ca^{2^+}}$ -dependent afterhyperpolarization current (${\rm I_{AHP}}$) as the primary linkage between these two signals. Power spectrum analysis suggests that the contribution of intracellular calcium fluctuations is dominant at low frequencies, below the natural cutoff for ${\rm I_{AHP}}$ noise (Figure 2). We believe that this linkage between membrane potential noise and intracellular calcium could regulate many of the well-documented roles of noise in the nervous system [1].

Author details

¹Department of Bioengineering, Arizona State University, Tempe, Arizona, 85281, USA. ²Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada, M5S 3G9. ³Naval Surface Warfare Center, W Bethesda, Maryland, 20817, USA.

Published: 20 July 2010

References

- Faisal AA, Selen LPJ, Wolpert DM: Noise in the nervous system. Nature Reviews Neuroscience 2008, 9(4):292.
- Diba K, Lester HA, Koch C: Intrinsic noise in cultured hippocampal neurons: experiment and modeling. *Journal of Neuroscience* 2004, 24(43):9723.
- Traub RD, Jefferys JG, Miles R, Whittington MA, Toth K: A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol (Lond.) 1994. 481(Pt1):79.
- Strassberg AF, DeFelice LJ: Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics. Neural Comput. 1993, 5(6):843-855.

doi:10.1186/1471-2202-11-S1-P122

Cite this article as: Stanley *et al.*: Calcium-dependent subthreshold fluctuations in membrane voltage; a modeling study. *BMC Neuroscience* 2010 11(Suppl 1):P122.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

