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Abstract

the same training twice a month at his home.

-42%), and right-hand MI (from -22% to -51%).

Background: For severely paralyzed people, a brain-computer interface (BCl) provides a way of re-establishing
communication. Although subjects with muscular dystrophy (MD) appear to be potential BCl users, the actual long-
term effects of BCl use on brain activities in MD subjects have yet to be clarified. To investigate these effects, we
followed BCl use by a chronic tetraplegic subject with MD over 5 months. The topographic changes in an
electroencephalogram (EEG) after long-term use of the virtual reality (VR)-based BCl were also assessed. Our
originally developed BCl system was used to classify an EEG recorded over the sensorimotor cortex in real time
and estimate the user's motor intention (M) in 3 different limb movements: feet, left hand, and right hand. An
avatar in the internet-based VR was controlled in accordance with the results of the EEG classification by the BCl.
The subject was trained to control his avatar via the BCl by strolling in the VR for 1 hour a day and then continued

Results: After the training, the error rate of the EEG classification decreased from 40% to 28%. The subject
successfully walked around in the VR using only his Ml and chatted with other users through a voice-chat function
embedded in the internet-based VR. With this improvement in BCl control, event-related desynchronization (ERD)
following MI was significantly enhanced (p < 0.01) for feet Ml (from -29% to -55%), left-hand MI (from -23% to

Conclusions: These results show that our subject with severe MD was able to learn to control his EEG signal and
communicate with other users through use of VR navigation and suggest that an internet-based VR has the
potential to provide paralyzed people with the opportunity for easy communication.

Background

For severely paralyzed people or subjects in a “locked-
in” state, direct brain-machine interaction provides a
way of re-establishing communication. Electroencepha-
logram (EEG)-based brain-computer interfaces (BClIs)
recognize intention-induced changes in ongoing EEG
signals and translate different mental states into the
appropriate commands for operating consumer electro-
nics or spelling devices. To provide a natural interaction
between humans and machines, BCIs must constantly
classify ongoing electric cortical activity and allow users
real-time control of external devices. Users should know
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exactly how the ongoing electric cortical activity is chan-
ging, and hence, considerable feedback must be
provided.

Virtual reality (VR) has been used as information-rich
feedback for BCIs [1-8]. The precise three-dimensional
graphics in VR are believed to help users feel a sense of
reality during BCI control. We developed a BCI that
classifies 3 different types of motor intentions (MlIs) on
the basis of the self-paced operation of an avatar (the
user’s graphical self-representation). The experiment
was done not only to check the effectiveness of long-
term use of BCI with VR feedback but also to deliver
e-communication opportunities to paralyzed persons
through the internet. For simplicity, only 3 bipolar EEG
channels were used for the classification. Using our por-
table VR-based BCI system, a tetraplegic subject with
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muscular dystrophy (MD) successfully communicated
with others over a 5-month period. We report this sin-
gle case to demonstrate our experience with the feasibil-
ity of internet-based VR-BCI as a new communication
tool. We also describe plastic changes in EEG topogra-
phy by long-term BCI training in the MD subject.

Results

Classification and error rate over time

With the increase in training days, the subject decreased
the error rate of the classification and finally succeeded
in controlling his avatar and communicating with other
users who were logged in to Second Life® from else-
where (the QuickTime demonstration film is available at
http://www.bme.bio.keio.ac.jp/0O1news/). Movie files are
also available. Additional files 1 and 2 show the demon-
stration in the initial and final conditions of avatar
controlling, respectively.

The error rate in the classification of left- and right-hand
MI decreased after the avatar-control training (Fig. 1). On
the final training day, about 5 months after admission, the
error rate showed a larger decrease during the MI period
after the cue than on the initial day (Fig. 1A). Fig. 1B
shows the average error rate during MI for all 9 days of
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Figure 1 Changes in the error rate for classification between
left- and right-hand motor intentions (Mls). (A) The error rate
over time during cue-paced sessions on the initial (thin line) and
final (thick line) training days. The gray shaded area indicates the
duration of the left- or right-hand MI. (B) The change in average
error rate during the MI period (gray shaded area in panel A) for a
total of 9 training days.

Page 2 of 9

the training. The average error rate reduced from about
38% to 25%.

Because of the subject’s health condition, we could not
conduct all experiments at a constant interval of
2 weeks. We started the training on 12 Apr 2008 and
ended it on 21 Sep 2008 (162 days; approximately
5 months). The other 7 experimental dates are indicated
on the x-axis scale in Fig. 1.

Along with decreasing the classification errors, the
subject also improved his true positive rate (TPR) and
false positive rate (FPR) through the training. Fig. 2
shows the receiver operating characteristic (ROC) curves
for left- and right-hand MI detection in the initial and
final training sessions and Fig. 3 indicates changes in
TPR, FPR, and area under the ROC curve (AUC) during
the BCI training period. These 3 parameters tended to
increase.

Multichannel EEG recording

Figs 4 and 5 represent the event-related desynchroniza-
tion (ERD)/event-related synchronization (ERS) during
the 27-channel EEG recording. Fig. 4A-4F shows the
time-frequency maps of the ERD/ERS on both the pre-
and post-training days. The mu ERD (8-13 Hz) values
following the feet, left-hand, and right-hand MIs were
all enhanced by the training (Fig. 5A, C, and 5D). The
most obvious change occurred at Cz for the feet MI
(approximately -29% to -55%; Fig. 5A). The peak of
ERD at C4 for the left-hand MI (from -23% to -42%;
Fig. 5C) and at C3 for the right-hand MI (from -22%
to -51%; Fig.5D) also increased. These ERD changes
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Figure 2 Receiver operating characteristic (ROC) curve for left-
and right-hand MI detection in the initial and final training
sessions. The thin curves are the data in the initial training sessions
and the thick curves are the data in the final training sessions for
the left- (solid line) and right-hand MI (dotted line). The circled
points on the curves mark the point of equal balance of sensitivity
and selectivity.
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Figure 3 Change in true positive rate (TPR), false positive rate
(FPR), and area under the ROC curve (AUC) during the avatar-
control training period. The lines indicate the change of TPR (A),
FPR (B), and AUC (C) for a total of 9 training days. The TPR and FPR
values corresponding to the best threshold for the solid ROC curves
shown in Fig. 2 was extracted. The solid lines represent the left-
hand IM and the dotted lines represent the right-hand MI.

showed a significant difference (p < 0.01) between the
pre- and post-training during the MI period (5.0-10.0 s).
Whereas the subject controlled the avatar using the BP
of the beta frequency band (25-35 Hz) at Cz, the
enhancement of the beta ERS showed no significant
difference (from 21% to 31%; Fig. 5B) during the MI
period.

EEG topographies on the pre- (Figs. 5E to 5H) and
post-training days (Figs. 51 to 5L) show the changes in
ERD/ERS somatotopic organization. In the post-training
days, mu ERD and beta ERS following the feet MI was
observed at the vertex and the ERD values following the
left- and right-hand MI were at the right and left
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hemispheres, respectively. Incidentally, in the left-hand
M], bilateral mu ERD was observed.

In addition, the changes in the TPR and FPR for all
the three MIs (feet, left hand, and right hand) through
the pre- and post-training sessions are shown in
Table 1.

Discussion

In this study, we developed an MI-based asynchronous BCI
system that can help users navigate an avatar in an inter-
net-based VR. This study was the first to show the feasibil-
ity of internet-based virtual reality (Second Life®) combined
with BCI for realization of social communication.

Currently, the BCI with the highest degree of freedom
in BCIs for VR navigation is published by Scherer et al.
(2008), a system that classifies EEG signals and trans-
lates the classification results into 4 commands: forward
movement, left rotation, right rotation, and stop [1],
similar to our BCI. Considering the degree of freedom,
other VR navigation systems with BCI has fewer com-
mands than the BCI by Scherer et al. In 2006,
Pfurtscheller et al. published a BCI with 3 commands:
forward movement, backward movement, and stop [2],
and most of the other relevant studies showed BCIs that
control 2 commands [3-5].

To move about freely in VR, 4 commands comprise the
minimum degree of freedom. Implementation of this
system achieved the result of physically challenged move-
ment in the VR at free will. In addition, our system’s use
of Second Life®, the VR that the voice chat function
through the Internet is embedded in, helps the physically
challenged communicate with others. The subject in our
study successfully walked and chatted with other VR users
while using the BCI at home. Networked VR on the Inter-
net would create synergy in terms of assistive technology
for the physically challenged.

A physically challenged individual with MD who was
trained to use this system changed his EEG pattern
through long-term BCI use. It is notable that the sub-
ject, who had not moved his feet in approximately
30 years, still had the ability to change the EEG patterns
to follow the feet MI in the feet representation area.
Moreover, his hands are also severely impaired, but we
found that his hand MlIs evolved EEG changes. Since
MD causes progressive changes in neuromuscular prop-
erties over the course of months or years, it was unclear
whether long-term BCI use actually changed EEG pat-
terns and classification accuracy in the MD subject.

Our novel finding in this study is the plastic changes
of EEG activity by long-term BCI training in the MD
subject. Although the Graz BCI group has also pub-
lished a long-term BCI training study in a patient [9],
that particular patient had injured his spinal cord. Spinal
cord injuries (SCI) cause myelopathy or damage to
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nerve roots or myelinated fiber tracts that carry signals
to and from the brain and are categorized as traumatic
injuries. Since the site responsible for functional loss is
at the spinal cord, the brain itself is intact. Indeed,
another study indicated that motor skills were consider-
ably intact in SCI patients [10]. Therefore, patients with
SCI are very likely capable of using BCI. On the other
hand, MD shows progressive skeletal muscle weakness,
and the neural strategy of motor control might change
over the course of several months or years. Thus, it is
more unclear in MD than in SCI whether long-term
BCI training positively affects EEG change for BCI con-
trol. The present study is the first to report half-year
BCI use by a patient with MD and evaluate changes in
EEG and BCI accuracy. While ERD/ERS caused by MI
became more prominent over the study duration of a
few months, the neuromuscular properties of patients
with MD change over the course of months or years.
From such observed post-training ERD changes in each
representation area, we speculate that sensorimotor

cortex plasticity was one of the factors causing the BCI
accuracy improvement.

Conclusions

We reported the use that 1 severely paralyzed individual
made of our original BCI system. We observed changes
in ERD and ERS patterns and increases in BCI perfor-
mance over long-term use of this system. Our results
suggest that it is possible to develop VR systems that
allow severely paralyzed patients to communicate with
others in a virtual world in the same way as a healthy
person.

Methods

Subject

The tetraplegic subject of this study was a 41-year-old
man who has suffered from severe MD for more than
30 years. His active ranges of motion in the shoulders,
elbows, wrists, and fingers are 0 degrees, except for
30 degrees in forearm supination and 25 degrees in
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thumb carpometacarpal abduction. He can barely bend
his fingers so he cannot use an ordinary mouse or key-
board. He is dependent on trunk support to maintain a
sitting position but has no difficulty speaking.

Informed consent for this study was given by the sub-
ject before the experiments. The experimental protocol
was approved by the local ethics committee of Keio
University. The subject participated in the experiment
every 2 weeks over a 5-month period. We conducted a
total of 9 days of avatar-control training using our VR-
based BCI (Fig. 6). In addition, to evaluate the cortical
activity changes caused by the training, we conducted
multichannel monopolar EEG recordings on both pre-

Table 1 Summary of true positive rate (TPR), false
positive rate (FPR), and area under the ROC curve (AUC)
on the pre- and post-training days

TPR(%) FPR(%) AUC(%)
Feet MI Pre-training 55 47 55
Post-training 56 41 59
Left hand training Pre-training 54 46 56
Post-training 61 49 59
Right hand training  Pre-training 53 49 53
Post-training 50 45 54

and post-training days. Every experiment was finished
within 2 hours to avoid tiring the subject.

EEG recording

EEG signals were recorded with 3 bipolar surface elec-
trodes named channel Cz, channel C4, and channel C3
(anodes: Cz, C4, and C3 of the international 10/20 elec-
trode system; cathodes: 25 mm anterior to respective
anodes; see also Fig. 6A), band-pass filtered in the fre-
quency range from 5 to 100 Hz and digitized at 256 Hz
by a biosignal acquisition system (g.USBamp, Guger
Technologies, Graz, Austria). The ground electrode was
positioned on the subject’s forehead.

Feature extraction
EEG contains different specific frequency bands (e.g.,
standard mu [8-13 Hz] or beta [18-40 Hz] bands) that
are particularly important for classifying different brain
states and especially for discriminating what a subject is
imagining. To extract this information, we computed
the spectral power in the reactive frequency bands
("band power” [BP] [11]) as the subject’s EEG feature.
The procedure for calculating BP is described below.
Channels Cz, C4, and C3 were analyzed by calculating
time-frequency maps of EEG data recorded on a pre-
training day (the recording details are described later).
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Based on these maps, the most reactive frequency bands
(8-13 Hz for the mu rhythm 25-35 Hz for the beta
rhythm) were manually selected by visual inspection and
used to set up the 2 classifiers. These procedures were
also described in another study [12]. These reactive
bands were used both for online processing of the BCI
and for offline analysis of subject-specific mu and beta
rhythms.

The BP of each mu and beta rhythm was estimated
from ongoing EEG by digital band-pass filtering with a
Butterworth filter of order 4, squaring, and averaging
the samples over 1 s. The processing was done sample
by sample. Afterward, the logarithm was computed
from these processed signals (Fig. 6B). Other studies of
healthy subjects reported that these rhythms somatoto-
pically change in amplitude by motor imagery of the
feet or hands [13,14]. We expected that similar EEG
patterns would be observed during MI in the tetraple-
gic subject. According to somatotopy, the feet MI was
detected using the BP in the beta frequency band of
the foot representation area (channel Cz) and the hand
MI was detected using the BP of the mu and beta

rhythms in the hand representation area (channels C4
and C3).

Classification and error rate over time
We designed the BCI to detect the feet MI with a single
threshold detector because the beta rhythm at Cz pro-
duces increases that can be detected by a single detector
[15]. On the other hand, the left- and right-hand MI
were detected by 2 threshold detectors and Fisher’s lin-
ear discriminant analysis (LDA) [16] because in certain
cases the mu and beta rhythms at C4 and C3 produce
only small asymmetric changes by unilateral hand MIs.
A cue-paced session for the initial setting of the LDA
classifier was performed without feedback prior to the
avatar-control training. The protocol was proposed by
Guger et al. [17]. The session consisted of 40 trials.
Each trial started with presentation of a fixation cross at
the centre of the computer screen for 4 s to allow the
subject to pay attention prior to the guidance of the
motor tasks. Visual guidance of a left- or right-hand MI
task was then displayed for 1 s and the subject was
asked to imagine the directed movement for 5 s. Finally,
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an inter-trial interval with a blank screen followed for
3 s before the next trial. A left- or right-hand MI task
was randomly requested with 20 trials for each ML

The BP of each mu and beta rhythm in channels C3
and C4 was calculated during this time and an LDA was
performed for these 4 features at every 250 ms (4 Hz)
within the trial interval (0-13 s) rather than sample by
sample (256 Hz) to enable rapid analysis at these time
points [5,18,19]. For every time point, a feature vector
containing 4 elements (mu BP at channels C3 and C4
and beta BP at channels C3 and C4) was generated.
Hence, we had 40 vectors (since one session had 40
trials) at each time point with an annotation of either
left-hand or right-hand intention. At each time point,
the 40 feature vectors were used to set the LDA para-
meters and to calculate the error rate of the classifica-
tion by 10-fold cross-validation as follows. Forty vectors
for a certain time point were mixed randomly and
divided into 10 small packets, each with 4 vectors.
Then, 9 packets were used as training data to set the
LDA parameters and the remaining packet was classified
by the LDA. This operation was done 10 times with dif-
ferent pairs of packets, and we averaged the 10 error
rates and 10 sets of LDA parameters. This calculation
was performed at every time point so the classification
error rate over time was obtained. The LDA parameter
at the time point with the minimum error rate was used
for online classification of the EEG in the avatar-control
training.

Importance in self-paced (at free will) BCI operation is
not only the rate of errors during the MI periods (true
positive rate: TPR) but also the rate of errors during the
rest periods (false positive rate: FPR). We calculated the
TPR and FTR with the same method used in another
study [20] for feet, left-hand, and right-hand MI detec-
tion by sample-by-sample analysis and briefly explain
the method below.

In this analysis, we divided the output signals of classi-
fiers into MI periods (events) and rest periods (non-
events). The two axes of the ROC curves were TPR and
FPR. The former is a measure of sensitivity while the
latter is a measure of electivity. These quantities are
captured by the following:

Rpp =Ngp [ (Npp + Npy)
Rpp =Npp [ (Ngn + Npp)

where Rrp and Rpp are TPR and FPR, respectively.
Nrp, Nep, Nrn, and Npp are the number of true posi-
tives, false negatives, true negatives, and false positives,
respectively. Note that all of these values are counted in
the samples. The area under the ROC curve (AUC) var-
ies between 0 and 1 and gives a measure of the
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reparability of 2 classes with an area of 1 for complete
separation.

From each ROC curve, a threshold corresponding to
the point of the ROC curve closest to the line Rrp = 1-
Rpp is selected as an indication of equal balance between
TPR and FPR.

The cue-paced feet MI task was not conducted in the
avatar-control training period (details are described
later) since only a simple threshold detected the feet MI
and we did not calibrate the detector with an EEG sig-
nal from the cue-paced session. Therefore, the changes
in TPR and FPR during the training period were ana-
lyzed for only left-hand and right-hand MIs. Analysis of
all 3 types of MI (feet, left hand, and right hand) was
performed of the pre- and post-training sessions.

Avatar-control training in VR

After setting the LDA classifier, we performed the ava-
tar-control training. Both the beta BP at channel Cz and
the output of the LDA classifier for hand MI classifica-
tion were converted to feedback bars in real time (via
asynchronous BCI [21]; see also Fig. 3C). When the
feedback bars exceeded the thresholds that were manu-
ally set at the beginning of the training, a keyboard
command signal corresponding to the MI type was sent
to the computer running the VR system. Feet, left-hand,
and right-hand MIs were translated into 3 distinct
actions for the avatar: going forward, left rotation, and
right rotation, respectively (Fig. 3D). No command was
sent when the feedback bar was below the threshold.
The 2 classifiers for feet and hand MIs ran in parallel, e.
g., to make it possible for the avatar to move forward
and turn at same time. The display of the bar length
and the avatar’s action was updated at a rate of 16 times
per second. We used Second Life® (Linden Lab, San
Francisco, CA, USA) as the Internet-based VR in our
BCI. Second Life® is an accessible three-dimensional VR
in which users can interact via their avatars and talk to
each other using the incorporated typing or voice-chat
system.

The subject was trained to control his avatar in Sec-
ond Life® by entering virtual buildings or walking with
other avatars using our BCI for about 1 hour on each
training day. To check the improvement of classification
accuracy, we conducted the cue-paced session again
after the training.

Multichannel EEG recording

We conducted multichannel EEG recordings on both
pre- and post-training days to evaluate the topographic
changes caused by the avatar-control training. The EEG
was referenced to the right earlobe and recorded from
27 Ag/AgCl scalp electrodes placed close to the
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sensorimotor area (FT7, FC5, FC3, FC1, FCz, FC2, FC4,
ECe, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7,
CP5, CP3, CP1, CPz, CP2, CP4, CP6, and TP8 of the
international 10/20 electrode system). The monopolar
EEG was amplified and filtered with 5-100 Hz band-
pass filters. The apparatus, filter setting, and sampling
rate were the same as those used for the avatar-control
training.

Cue-paced sessions for the multichannel recording
were performed. The requested Mls were the feet, left-
hand, and right-hand in a random order. The recording
was divided into 5 sessions consisting of 30 trials each,
which led to 50 repetitions for each MI task. There
were sufficient breaks between the sessions to prevent
fatigue. The timing of the visual guidance and the length
of each trial were the same as in the cue-paced session
for the initial LDA setting.

Analysis of multichannel EEG
To quantify the impact of the training on the BP, we
computed time-frequency maps using the data on pre-
and post-training days as follows. First, the monopolar
EEG signals were converted to a reference-free form by
a Laplacian algorithm [22] taking the difference between
the potentials at an electrode of interest and the mean
of its four nearest-neighbor electrodes (e.g., for electrode
Cz, these were FCz [anterior], C1 [left], C2 [right], and
CPz [posterior]). This spatial filter was used to retain a
high signal-to-noise ratio [23]. Second, the power of the
filtered signals at Cz, C4, and C3 were computed with a
fast Fourier transform by following the segmentation of
the data stream in approximately 94% overlapped seg-
ments of 1-s duration, resulting in a 1 Hz frequency
resolution, and averaged separately for the 3 conditions
(feet, left-hand, and right-hand MI). Third, the BP of
every 1 Hz in 4-45 Hz was averaged for a rest period
(0.0-4.0 s of the trials) and assigned to 0% according to
the following formula: ERD/ERS = [(power during rest)
- (power during experimental condition)]/(power during
rest). These decreases (negative values) and increases
(positive values) are the so-called ERD and ERS [24].
The values of the ERD/ERS calculated by the above for-
mula were then separately averaged for each mu and
beta band. Afterward, the Wilcoxon signed-rank test
was applied for a comparison of the pre- and post-train-
ing days. The calculation procedure described above is
the power method of Kalcher and Pfurtscheller [25].
Topographical ERD/ERS maps for the subject-specific
frequency bands were shown via projection onto a stan-
dard brain template using the Brain Electrical Source
Analysis Software Version 5.1.8 (BESA, MEGIS Software
GmbH, Grifelfing, Germany). To show the distribution
of ERD/ERS over the whole head, EEG signals at all 27
channels were used.
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Additional material

Additional file 1: Demonstration movie recorded during the initial
period of the avatar-control training. In spite of the subject’s intention
to enter a training course (green path) in the VR (virtual reality), he
proceeded in another unintended direction. It can be seen that he
wanders in the area with no success of going back to his desired
direction.

Additional file 2: Demonstration movie recorded during the final
period of the avatar-control training. The window consists of two
sub-windows on the right-hand and the image of computer monitor on
the left-hand. The lower right sub-window shows the subject trying to
control the avatar in the monitor. The upper right sub-window depicts
the volunteer students participated in this demonstration. They logged in
the VR from their university located 15 km away from the subject’s
home. The subject first tries to reach one of the volunteers’ avatars.
Although he approaches another avatar accidentally at the beginning, he
managed to correct his way and successfully reached the avatar that he
intended at first. Other volunteers’ avatars consequently came towards
the subject’s avatar and celebrated the subject’s success by cheering,
dancing and chapping.
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