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Consider the transform from a discrete spike train to a
continuous neurophysiological response such as postsyn-
aptic membrane voltage or muscle contraction. Here we
ask about the inverse of this transform: given the
response, how can we estimate from it the spike train that
produced it? A simple kernel-based model of such a trans-
form is

where t is time (already discretized for practical computa-
tion, so that t is the index of a series of time bins), ti is the
time of spike i, K is the single-spike response kernel of
length NK time bins, A is an amplitude that scales K at each
spike time, and R is the overall response to the spike train.
In previous work [1,2], we developed a method to
"decode" (1) to find, given the spike times and the
response R, simultaneously both K and A. If the spike
train is unknown, a spike might hypothetically occur in
each time bin t'. In that case, (1) generalizes to the stand-
ard convolution

The inverse transform can then be computed using (1) or
(2), depending on the circumstances, in at least two ways.
If, perhaps from a previous decoding of (1) with a known
spike train, we know K, we can use our decoding method,
or another standard method, to solve (2) in one step to
find from a novel R(t) the corresponding A(t). In datasets
with relatively low noise and low spike density, the spikes
can then be identified simply as occurring in time bins
where A(t) ≠ 0 or, in practice, where A(t) exceeds some
threshold. Otherwise, A(t) still reflects the input presented
by the spike train, albeit in a more diffuse way. A more
challenging problem occurs if K is unknown. Then we can
decode (1) to find K and A as previously [1,2], except iter-
atively, starting with the assumption that each time bin
contains a spike and progressively deleting spikes from
those bins that have the smallest values of A. Figure 1
shows an example with synthetic data where this method
simultaneously found K and A, reconstructed R, and iden-
tified each spike in the train, perfectly. We have used these
methods successfully with synthetic data and with the real
transforms from motor neuron spikes to postsynaptic
membrane voltage and muscle contractions in the cardiac
system of the blue crab [3].
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Computation of the inverse transform illustrated with syn-thetic dataFigure 1
Computation of the inverse transform illustrated 
with synthetic data. A-C, blue: K and values of A at 33 ran-
dom spike times were used to construct the overall 
response R. A-C, red: the corresponding solutions found by 
the iterative decoding of (1) with progressive deletion of can-
didate spikes. The corresponding blue and red points are in 
all cases identical; the red points have therefore been shifted 
right by 1 time bin for visibility. D: log of the fractional mean 
square error in the reconstruction of R.
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