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Abstract

Background: Dopaminergic pathways that influence mood and behaviour are severely affected in
cerebral hypoxia. In contrast, hypoxia promotes the differentiation of dopaminergic neurons. In
order to clarify the hypoxic sensitivity of key dopaminergic genes, we aimed to study their
transcriptional regulation in the context of neuroblastoma and astrocytoma cell lines exposed to
1% hypoxia.

Results: Quantitative RT-PCR assays revealed that the transcription of both type D3 and D4
postsynaptic dopamine receptors (DRD3 and DRD4) was induced several fold upon 2-day hypoxia
in a cell-specific manner, while the vascular endothelial growth factor gene was activated after 3-hr
incubation in hypoxia. On the other hand, mRNA levels of type 2 dopamine receptor, dopamine
transporter, monoamino oxidase and catechol-O-methyltransferase were unaltered, while those
of the dopamine receptor regulating factor (DRRF) were decreased by hypoxia. Notably, 2-day
hypoxia did not result in elevation of protein levels of DRD3 and DRDA4.

Conclusion: In light of the relatively delayed transcriptional activation of the DRD3 and DRD4
genes, we propose that slow-reacting hypoxia sensitive transcription factors might be involved in
the transactivation of DRD3 and DRD4 promoters in hypoxia.

Background

The brain is considered a fully aerobic organ as it requires
about 20% of total oxygen consumption in humans [1].
Interruption of steady oxygen supply results in focal
necrosis and causes severe dysfunction in the ischemic
penumbra [2]. Numerous studies underlined the seminal
role of hypoxia inducible factor-1a (HIF-1a.) in governing
the hypoxic response in both neurons and glial cells [3,4].
The neuroprotective role of HIF-1a has been demon-

strated in the ischemic penumbra through erythropoietin
induction [5] as well as in mediating a neuroprotective
response to amyloid-p peptide [6]. However, the regula-
tion of central neurotransmission systems has not been
thoroughly investigated under hypoxic conditions,
although their inadequate adaptation might contribute to
the development of cerebral palsy and abnormal behav-
ioural patterns in patients affected by pre- or postnatal cer-
ebral hypoxia, respectively [7-9].
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Apart from its well-known functions in the nigro-striatal
pathway, dopamine plays a very important role in the reg-
ulation of mood, affections, impulsivity and cognitive
functions in the limbic system [10]. Dopaminergic neuro-
transmissison has been shown to be exquisitely vulnera-
ble to ischemic-anoxic insults, and hypoxic derangements
of the dopamine system have been implicated in the
pathogenesis of cerebral palsy, schizophrenia and mini-
mal brain dysfunction such as attention deficit hyperactiv-
ity disorder (ADHD) [11,12]. On the other hand, hypoxia
has been implicated in promoting differentiation of neu-
ronal precursor cells to dopaminergic neurons through
activation of HIF-1a [13,14].

Our current understanding of dopaminergic signalling in
hypoxia is further confounded by results of recent in vivo
studies showing that hypoxic regulation of key dopamin-
ergic genes is highly tissue-specific, and strongly influ-
enced by the duration of hypoxic periods. Among these
factors, most of attention has been attributed to the
dopamine D2 receptor (DRD2) due to its pathological
role in schizophrenia. DRD2 mRNA levels show an early
and transient reduction in the striatum after hypoxia-
ischemia in newborn rats [15], and attenuation of DRD2
mediated inhibition of calcium influx in pheochromocy-
toma cells has been reported in hypoxia [16]. On the
other hand, Huey and Powell revealed that hypoxia mod-
ulates DRD2 expression in a tissue-dependent manner
[17]. For instance, DRD2 mRNA levels initially increased
in the caudal nucleus tractus solitarius in rats in response
to hypoxia, but then significantly decreased after 48 h
(and longer) hypoxic treatment. A similar tendency was
unveiled in the rat carotid body, too. In contrast, hypoxia
profoundly increased DRD2 mRNA in the rostral nucleus
tractus solitarius at all time points investigated [17]. A
study conducted on rabbit brains also revealed that
hypoxic expression patterns of DRD1 and DRD2 in differ-
ent brain areas are far from being uniform [18]. Moreover,
widely accepted concepts like induction of the tyrosine
hydroxylase gene by hypoxia [19] have been challenged
by recent studies finding practically unaltered or slightly
decreased transcript and protein levels upon hypoxia
[20,21]. To our best knowledge, however, the hypoxic
modulation of DRD3 and DRD4 receptors, two highly
analyzed polymorphic determinants of psychiatric disor-
ders [22-24], has not been addressed yet experimentally.

Previously we studied the functional effects of DRD4 pro-
moter polymorphisms on gene expression [25], and rein-
forced the molecular function of a promoter variant
characterized earlier [26]. In the present study, we aimed
to investigate the transcriptional regulation of a set of
dopamine-specific genes by measuring their mRNA and
protein levels upon short-term hypoxic treatment of a
neural (SK-NF-I) and a glial (CCF-STTG1) cell line. These
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cell lines were chosen since they correspond to the main
cell types of the brain, neurons and astrocytes; moreover,
both of them express DRD2, DRD3 and DRD4 receptors.
We found that the transcription of the type D3 and D4
postsynaptic dopamine receptors (DRD3 and DRD4) was
induced several fold upon 2-day hypoxia in a cell-specific
manner.

Results

Expression and transcriptional activity of HIF-1 in SK-NF-
I and CCF-STTGI cells

Hypoxia-dependent transcriptional activation of genes is
mostly governed by HIF-1a.. This fact prompted us to ana-
lyze the expression patterns of HIF-1aw in the SK-NF-I
human neuroblastoma and CCF-STTG1 human astrocy-
toma cell line. To this end, cells were challenged either
with 1% hypoxia or with 100 uM desferrioxamine (DFO),
a hypoxia-mimicking agent that is known to stabilize HIF-
1a through blocking the activity of proline hydroxylases
[27]. As it can be seen in Fig. 1, the HIF-1a protein was
undetectable in normoxic cultures, while both short-term
hypoxic or DFO treatment dramatically upregulated the
protein levels of this hypoxia dependent transcription fac-
tor. Importantly, two separate bands were recognized by
the specific HIF-1a antibody that might correspond to dif-
ferentially spliced variants [28]. In neuroblastoma cells,
both bands were induced equally, while in CCF-STTG1
cells the staining of the upper band was more pronounced

(Fig. 1).

In order to directly monitor the transcriptional activity of
HIF-1a in neuroblastoma cells, we generated a luciferase
reporter vector containing multiple hypoxia responsive

N H DFO
N H
Figure |

Expression of HIF-1o in SK-NF-1 and CCF-STTGI
cells. Parallel cultures were incubated in normoxia (21% O,,
lane "N") or in hypoxia (1% O,, lane "H") for 8 hours, or
were treated with 100 uM desferrioxamine for 8 hours in
normoxic atmosphere (lane "DFO") where indicated. Cells
were subsequently harvested, extracted and samples were
resolved by SDS-PAGE, blotted and probed with an anti-HIF-
o antibody at a dilution of 1:1000. Three blots were made
from 3 independent biological samples and a representative
image is shown.
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elements inserted in the SV40 strong promoter (Fig. 2).
This construct was transiently transfected into SK-NF-1
cells which were subsequently subjected to 1% hypoxia or
treated with DFO as described in Methods. Notably, both
hypoxia and DFO treatment enhanced the activity of this
reporter construct several fold over basal levels (Fig. 3).
These results proved that the hypoxic signalling pathway
is intact and readily inducible in SK-NF-I cells.

Induction of dopamine receptors 3 and 4 upon hypoxia
We aimed to study the expression of a set of dopaminergic
neurotransmission specific genes under hypoxia in the
SK-NF-I and astrocytoma model system. To this end, par-
allel cultures were maintained both in hypoxia and nor-
moxia, and the temporal pattern of gene expression was
followed by quantitative reverse transcription PCR using
gene-specific TagMan probes.

Finding a stable endogenous control gene is the corner-
stone of the validation of qRT-PCR data. In order to select
an optimal hypoxia-insensitive reference gene, we sought
to screen for amplification efficiency and overall stability
the mRNA levels of the following five candidate genes
widely used in qRT-PCR studies: -actin, hydroxymethyl-
bilane synthase (HMBS), hypoxanthine guanine phos-
phorybosyltransferase (HPRT), PO large ribosomal
protein (RPLPO) and RNA polymerase II (RPII).

Table 1 shows the representative relative expression levels
of these potential internal control genes measured in 8-hr
hypoxic samples in SK-NF-I cells. Highly similar results
were obtained in astrocytoma cells (data not presented).
Based on these data, three reliable control pairs have been
found (HPRT-RPLPO, HPRT-RPII and RPLPO-RPII),
whereat the relative expression ratios were closest to 1. Of
them, we chose the RPLPO gene as internal control.

No significant changes in the mRNA levels of dopamine
D2, D3 and D4 receptors (DRD2, DRD3 and DRD4), the
dopamine transporter (DAT), monoamino oxidase A
(MAOA), catechol-O-methyltransferase (COMT) and vas-

SV40 promoter

5x HRE

. luciferase
Kan/Neo resistance gene

SV40 promoter
Figure 2

Schematic map of the pSV40-5xHRE-luc reporter
construct.
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Figure 3

Enhancement of HIF-1a activity in SK-NF-I cells
upon hypoxia or DFO treatment. SK-NF-| cells were
transiently transfected with the pSV40-5xXHRE-luc reporter
construct (Fig. 2) and incubated under normoxic or hypoxic
conditions, or treated with 100 uM DFO, respectively, for 24
hours. Luciferase activities normalized to 3-galactosidase lev-
els are displayed as fold increments over the control activity.
Data are means of three parallel determinations from three
independent experiments (N = 9); bars represent standard
deviations (*: p < 0.05; **: p < 0.0l and ***: p < 0.001).

cular endothelial growth factor (VEGF) were revealed in
samples kept for 0-48 hrs in normoxia (data not shown).
On the contrary, both DRD3 and DRD4 receptor mRNA
levels were upregulated upon long-term (48 hrs) incuba-
tion of SK-NF-I and CCF-STTG1 cells in 1% hypoxia (Figs.
4 and 5). In neuroblastoma cells, the induction of DRD4

Table I: Selection of the optimal internal control gene for qRT-
PCR assays in SK-NF-I cells.

RPLPO B-actin RPII HMBS
HGPRT 1.04 2.83 1.17 2.49
HMBS 2.60 1.14 2.13
RPII 1.22 2.42
B-actin 297

Data indicate the ratios of 2-ACT values of corresponding gene pairs.
The ratios were calculated by dividing the greater value with the
smaller one so as to get quotients exceeding |. Cy values were
determined by calculating the means of three parallel PCR
amplifications from three independent cDNA samples (N = 9)
prepared from SK-NF-I cultures kept for 8 hrs in 1% hypoxia.
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was much more pronounced (about eightfold compared
to 48-hr untreated control levels) than that of DRD3 (Fig.
4). In contrast, the DRD3 was much more inducible than
DRD4 in astrocytoma cells, and its mRNA levels were
highly elevated already after 24 hr hypoxia (Fig. 5). How-
ever, the induction pattern of both receptors differed pro-
foundly from that of VEGF, a positive control gene known
to be directly activated by HIF-1a: transcription of the
VEGEF gene was induced already after 3 hr hypoxia and its
mRNA levels dynamically increased over the entire incu-
bation period in both cell lines.

Importantly, the DRD2 gene did not prove to be hypoxia
sensitive at all in either cell lines (Figs. 4 and 5). Further-
more, no remarkable alterations were revealed in the
mRNA levels of COMT, MAOA and DAT upon hypoxia in
either cell lines investigated (Table 2).

DRREF transcription is repressed by hypoxia

DRRF (dopamine receptor regulating factor, Kruppel-like
factor 16) is a zinc finger transcription factor that is con-
sidered a key regulator of post-synaptic dopamine recep-
tors. DRRF has reportedly modulated DRD1, DRD2 and
DRD3 promoter activities in a cell specific manner [29].
We were prompted to check whether activation of DRD3
and DRD4 promoters might be due to altered DRRF
expression in hypoxia. It turned out that 1% hypoxia
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Figure 4

Induction of dopamine D3 and D4 receptor mRNA
levels in SK-NF-I cells upon hypoxia. Parallel cultures of
SK-NF-I cells were maintained under normoxic or hypoxic
conditions for the indicated time periods. Cells were har-
vested, total mMRNA was isolated and analyzed in real-time
reverse transcription PCR assays with TagMan probes spe-
cific for the human DRD2 (circles), DRD3 (triangles) and
DRD4 (squares) receptors. VEGF (filled circles) was included
as a well-known control target gene of HIF-1a. Expression
levels were normalized to the RPLPO internal control gene.
All data are expressed as fold changes relative to levels meas-
ured in parallel normoxic samples. Data are means of three
parallel determinations from three independent experiments
(N = 9); bars represent standard deviations (*: p < 0.05; **: p
< 0.0l and *¥**: p < 0.001).
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fold change

Figure 5

Induction of dopamine D3 and D4 receptor mRNA
levels in CCF-STTGI cells upon hypoxia. Parallel cul-
tures of CCF-STTGI cells were kept, treated and analyzed as
described in Fig. 4. Data are means of three parallel determi-
nations from three independent experiments (N = 9); bars
represent standard deviations (*: p < 0.05; **: p < 0.0 and
#k p < 0.001).

repressed DRRF levels in a time-dependent manner in SK-
NF-I cells. Its concentration was the lowest after 16 hr
hypoxia and then slightly elevated up to 48 hrs (Fig. 6). In
conclusion, there seems to be an inverse correlation
between DRD3/DRD4 and DRRF levels in the context of
SK-NF-I neuroblastoma cells.

No elevation of DRD3 and DRD4 protein levels by hypoxia
Having demonstrated the hypoxia sensitivity of the DRD3
and DRD4 genes, we aimed to examine whether elevated
mRNA levels of both genes correlate well with protein
expression. To this end, neuroblastoma and astrocytoma
cells were cultured parallel for 48 hrs in normoxia or in
1% hypoxia, respectively, then fixed and immunostained
with specific anti-DRD3 and anti-DRD4 antibodies. Cells
were homogenously stained with marked cortical enrich-
ment (Fig. 7), a pattern characteristic of membrane sur-
face receptors [30]. We quantified staining intensities of
corresponding normoxic and hypoxic samples by subject-
ing 500-500 cells to densitometry; however, no significant
changes were revealed (data not shown). One can con-
clude that the transcriptional activation of DRD3 and
DRD4 genes was not followed by elevation of their pro-
tein levels in these two cell lines.

Discussion

Since we chose human neural tumour cell lines as experi-
mental model systems, it was mandatory to verify that the
hypoxic signalling pathway is intact and functional in
these cells. Checking the mere expression of HIF-1a by
western blot is, however, not sufficient to claim that SK-
NF-I and CCF-STTG1 cells express a functional HIF-1a
variant (Fig. 1). For instance, others found that the tran-
scriptional activity of HIF-1 can be strongly impaired
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Table 2: Relative mRNA levels of catechol-O-methyltransferase (COMT), monoamino oxidase A (MAOA) and dopamine transporter

(DAT) in SK-NF-I cells

0 hr 3 hrs 6 hrs 24 hrs 48 hrs
COMT 1.00 £0.18 0.77 £ 0.12 095+0.17 1.46 £ 0.23* 0.69 + 0.08
MAOA 1.00 £ 0.11 1.06 £ 0.13 1.18 £0.33 1.88 £ 0.16™* 0.86 £ 0.10
DAT 1.00 £ 0.24 0.78 £ 0.11 1.14 £ 0.15 1.46 £ 0.24 0.66 + 0.08

Parallel cell cultures were incubated in 1% hypoxia for the indicated time periods. cDNA samples were prepared from three independent cultures

and amplified in three parallel PCR reactions (N = 9). Relative expression levels were calculated as means and standard deviations of

5-AACy

values normalized to expression levels of the RPLPO internal control gene. Data presented in the table were generated by dividing these normalized
expression levels by that of the 0-hr control (*: p < 0.05; ** p < 0.0l and **: p < 0.001).

without simultaneous reduction in HIF-1a protein levels
under certain conditions [31], and accumulation of non-
functional HIF-1a has also been reported in normoxic
cells [32]. Results presented in Fig. 3 clearly demonstrated
that HIF-1a was highly functional in our experimental
system as it transactivated an artificial hypoxia-responsive
promoter construct several fold upon hypoxia. Impor-
tantly, the desferrioxamine treatment used as a positive
control did not elicit a transactivation commeasurable
with that of 1% hypoxia (5.5 fold versus 8.5 fold; Fig. 3,
columns 2 and 3), although the expression patterns of
HIF-1a in SK-NF-I cells were highly similar in both cases
as evaluated by western blot (Fig. 1, upper panel). This
marked difference might be attributed to the fact that HIF-
1o is modified post-transcriptionally both by proline and
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Figure 6

DRREF transcript levels in SK-NF-I cells exposed to
hypoxia. Cell cultures were kept either in normoxia or in a
I% oxygen atmosphere for the indicated time periods. Cells
were subsequently harvested, cDNA was synthesized and
DRRF mRNA levels were measured using a specific Tagman
probe. Expression levels were normalized to the RPLPO
internal control gene. All data are expressed as fold changes
relative to levels measured in parallel normoxic samples.
Data are means of three parallel determinations from three
independent experiments (N = 9); bars represent standard
deviations (*: p < 0.05; **: p < 0.0l and ***: p < 0.001).

asparagine hydroxylases in its oxygen-dependent degrada-
tion domain and in its C-terminal transactivation
domain, respectively [33]. Proline hydroxylation destabi-
lizes HIF-1a by facilitating its interaction with the von
Hippel-Lindau protein, while asparagine hydroxylation
by FIH-1 abrogates its interaction with the coactivator
protein CBP/p300. No hydroxylation takes place in
hypoxia, therefore HIF-1a is fully functional, while DFO
treatment might not block fully asparagine hydroxylation,
leading to the accumulation of HIF-1a with compromised
transactivation potential.

In the RT-PCR assays we ab ovo excluded GAPDH, one of
the most frequently employed internal control genes, due
to its explicit hypoxia sensitivity [34,35], although early
studies with hypoxia relied upon this conventional con-
trol gene [36]. In accordance with data of Zhong and

without primary

% normoxia
antibody

hypoxia

DRD3

SK-NF-I

DRD4

DRD3 CCF-STTGI

Figure 7

No change in DRD3 and DRD4 protein levels upon
hypoxia. 48-hour hypoxic (1% O,) or control (21% O,) SK-
NF-I and CCF-STTGI cultures were immunostained with
anti-DRD3 (1:50) or anti-DRD4 (1:250) antibodies, respec-
tively. Representative images from three independent experi-
ments (N = 3) are shown. The first column displays
backgrounds obtained by omitting the primary antibody from
the staining assays.
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Simons [34], B-actin did not prove to be a reliable internal
control gene in the context of our cells too (Table 1).

Although the positive control gene VEGF was induced in
both cell lines in hypoxia as expected, its expression pat-
terns were slightly different (Figs. 4 and 5, dashed line).
This observation might be related to the fact that CCF-
STTG1 cells predominantly express the higher molecular
weight variant of HIF-1a (Fig. 1) that might bind the
VEGF promoter with slightly different affinity.

Regarding the hypoxic induction of the dopamine recep-
tor genes, two important conclusions could be drawn.

First, the profound difference between the induction pat-
terns of DRD3 and DRD4 and the direct HIF-1a target
gene VEGF implies that the DRD3 and DRD4 promoters
might not be activated directly by HIF-1a but other slow-
reacting hypoxia-sensitive transcription factors might be
involved in their transcriptional regulation (Figs. 4 and 5).
Apart from the HIF family, hypoxia activates a cohort of
other well-known transcription factors, such as NF-«xB
[37], AP-1 (activator protein 1) [38], the tumour suppres-
sor p53 [39] and c-Myc [40], among others. These factors
activate target promoters alone or in concert with HIF
family members; moreover, they might modulate HIF-1a
expression, eliciting a protracted transcriptional activation
of HIF-1a target genes in hypoxia [41]. On the other
hand, p53, c-Myc and NF-kB have been shown to induce
microRNAs that may reflect another level of control of the
hypoxic response [42]. Unfortunately, the promoters of
DRD3 and DRD4 receptors have not yet been character-
ized thoroughly, and further investigations such as chro-
matin immunoprecipitation assays are needed to explore
whether the above mentioned transactivators can really be
recruited to these promoters in vivo. Interestingly,
although DRD?2 is a known target gene of the hypoxia-
inducible NF-xB [43], we did not observe any hypoxia-
related alterations in its expression in the context of our
cell lines (Figs. 4 and 5). A similar contradiction has been
revealed upon studying the expression pattern of DRRF in
hypoxia. Although there are consensus binding sites for
AP-1 in the DRRF promoter [44], repressed DRRF mRNA
levels were detected upon hypoxia (Fig. 6). On the other
hand, it is tempting to assume that DRRF might repress
directly or indirectly the DRD3 and DRD4 promoters in
cells as the expression patterns of these genes were inverse:
DRREF levels were the lowest after 16-24 hr hypoxia when
DRD3 and DRD4 mRNA concentrations started to elevate
(Figs. 4 and 5).

Second, the observation that SK-NF-I cells preferentially
expressed DRD4 while DRD3 was mostly activated in
CCF-STTG1 cells might be due to different expression of
critical, gene-specific transcription factors, or to epigenetic
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differences in chromatin structure or in hypoxia-respon-
sive remodelling of chromatin (histone acetylation, meth-
ylation etc.). This issue is particularly interesting in the
light of recent reports claiming that HIF-1a is capable of
interacting both with histone acetyltransferases and
deacetylases [45,46]. We currently try to address the epige-
netic regulation of dopaminergic neurotransmission
related genes by using specific modulators of chromatin
modifying enzymes.

In spite of the profound transcriptional activation of
DRD3 and DRD4 promoters in hypoxia, we could not
detect elevated protein levels by immunostaining of either
SK-NF-1 or CCF-STTG1 cultures (Fig. 7). One can specu-
late that the duration of hypoxic treatment (48 hrs) might
not have been enough for protein synthesis, although
DRD3 mRNA levels were elevated already upon 24 hrs
incubation under hypoxic conditions in astrocytoma cells
(Fig. 5). On the other hand, it can be assumed that trans-
lation of these transcripts was strongly blocked by
hypoxia. A large body of experimental evidence suggests
that hypoxia can reduce cellular energy levels, leading to
activation of the AMP-activated protein kinase (AMPK)
that downregulates mammalian target of rapamycine
(mTOR) activity, a critical stimulator of translation [47].
Moreover, hypoxia has been reported to activate PERK
(PKR-like endoplasmic reticulum kinase) that inactivates
the elF2a translation initiation factor by phosphorylation
[48]. However, particular mention must be made of the
results of [49] who reported that 2-hr oxygen and glucose
deprivation increases DRD2 and DRD3 protein expres-
sion in rat oligodendrocytes. Unfortunately, they did not
study the effect of hypoxia alone on the expression of
these receptors, therefore their results are not directly
comparable with ours.

Conclusion

In the present study we reported for the first time the
hypoxia-induced transcriptional activation of the
dopamine D3 and D4 receptor genes. However, the
molecular mechanism of transactivation remains to be
elucidated as our data indicate that these promoters might
not be targeted directly by HIF-1a. Nevertheless, modula-
tion of postsynaptic dopamine receptor genes by hypoxia
might play a role both in the formation of dopaminergic
circuitries in the developing brain and in the adaptation
of neurons to post-ischemic conditions.

Methods

Plasmid constructions

The pSV40-5xHRE-luc-Kana reporter vector was con-
structed by subcloning the VspIl-BamHI fragment of the
pGL3-5xHRE-Control vector, bearing the SV40 promoter
and the luciferase gene, into the Vspl-BamHI site of the
pEGFP-C2 vector. The pGL3-5xHRE-Control vector, con-
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taining five contiguous hypoxia responsive elements (5'-
GATCTGAGACAGCACGTAGGGC-3') upstream of the
luciferase reporter gene, was a generous gift from Dr. M.
Geiszt (Institute of Physiology, Semmelweis University,
Budapest, Hungary).

Cell culture, treatments and transfections

The SK-NF-I human neuroblastoma cell line and the CCF-
STTG1 human astrocytoma cell line were maintained in
Dulbecco's modified Eagle's medium (DMEM) supple-
mented with 10% fetal bovine serum, 100 U/ml penicillin
and 100 pg/ml streptomycin. Normoxic cultures as well as
samples treated with the iron chelator desferrioxamine
(DFO; 100 uM final concentration) were kept in 21% O,,
74% N, and 5% CO, in humidified atmosphere. Hypoxic
samples were incubated in a humidified atmosphere of
1% O,, 94% N, and 5% CO, in a modular incubator
chamber (Billups-Rothenberg, USA). All reagents were of
analytical grade and obtained from Sigma-Aldrich Co.
Cell viability exceeded 95% throughout all experiments as
proven by the trypan blue exclusion test.

In reporter assays, 1.5 x 100 cells were transiently cotrans-
fected with 0.3 pg pSV40-5xHRE-luc-Kana reporter plas-
mid and 0.1 pg pCMV-B-gal using the Lipofectamine
reagent (Invitrogen). At 24 hrs after transfection the cells
were subjected to hypoxia or incubated with DFO for 24
hrs, respectively, as indicated. Cells were extracted by
three consecutive freeze-thaw cycles in Tris-HCI buffer
(250 mM, pH 8.0), and luciferase and B-galactosidase
activities were determined as reported earlier [50].

HIF-1 immunoblotting

Cells were treated and washed as described above. Pellets
were resuspended in a freshly prepared lysis buffer con-
taining 50 mM Tris-HCI pH 7.6, 150 mM NaCl, 10% (V/
V) glycerol, 2 mM DTT, 0.5% (V/V) NP-40, 5 mM EDTA,
1 mM Na-vanadate, 1 mM PMSF, 20 mM NaF, 10 mM
benzamidine, 10 mM lactacystin (a proteasome inhibi-
tor), supplemented with Complete Protease Inhibitor
Cocktail (Roche). Cells were disrupted by sonication on
ice with a Vibra-Cell device (Sonics & Materials, USA) at
20 kHz and 25 W output by 3 x 10 s pulses. Supernatants
were clarified by centrifugation (14,000 g, 20 min, 4°C).
The protein concentration of cleared supernatants was
determined with the Bio-Rad D Protein Assay kit. Sam-
ples were diluted to equal protein concentration and sup-
plemented with equal volumes of 2x Laemmli buffer
followed by heat denaturation (100°C, 5 min). Approxi-
mately 25 pg of total protein were resolved by SDS-PAGE
on 8% gel slabs and subjected to western blotting as
described in [51].

Membranes were immunoblotted with a polyclonal anti-
human HIF-1o primary antibody at 1:2,000 dilution for
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60 min and subsequently with a secondary anti-mouse
antibody derived from goat at 1:4,000 dilution (60 min,
room temperature). Immunocomplexes were visualized
by the enhanced chemiluminescence reaction (Amersham
Life Sciences). Three blots were made from 3 independent
biological samples.

Extraction of total RNA, cDNA synthesis and qRT-PCR
assays

Total RNA was isolated by the RNeasy kit (Qiagen),
according to the manufacturer's instructions. The quality
of the preparation was checked by running an aliquot on
ethidium bromide stained agarose gels.

cDNA was reverse transcribed with the High-Capacity
c¢DNA Archive Kit (ABI). The reaction contained 0.2 pg
total RNA, 5 U/ul MultiScribe™ Reverse Transcriptase and
1x relative concentration of Reverse Transcription Buffer,
dNTPs and random primers in 50 pl final volume. The
reaction was incubated at 25°C for 10 min and then at
37°C for 120 min.

Real-time PCR assays were performed in 25 pl final vol-
ume containing 5 pl cDNA, 1x ABI PCR master mix, gene-
specific TagMan® primers and the gene-specific, FAM-
labelled probe. Amplification and signal detection were
performed using an ABI 7300 Real-Time PCR System
(Applied Biosystems). Denaturation at 95°C, 10 min was
followed by 40 thermocycles (95°C, 15 sec and 60°C, 1
min). Reactions were performed from three independent
biological replicates in triplicate using RNase-free water as
negative control. C-values were set in the exponential
range of the amplification plots using the 7300 System
Sequence Detection Software 1.3. AAC|-values corre-
sponded to the difference between the Ci-values of the
genes examined and those of the RPLPO calibrator (inter-
nal control) gene. Relative expression levels of genes were
calculated and expressed as 2-2ACT. To minimize the effect
of pipetting errors, the TagMan reaction mixture con-
tained 6-carboxy-X-rhodamine (ROX) as a passive refer-
ence calibrator fluorescent dye.

The following TagMan® assays (Applied Biosystems) were
used in this study: HGPRT (Hs99999909_m1); RPLPO
(Hs99999902_m1); HMBS (Hs00609297_m1); RPII
(Hs00172187_m1); fB-actin (Hs99999903_m1); VEGF
(Hs00900058_m1); DRD2 (Hs01024460_m1); DRD3
(Hs00364455_m1); DRD4 (Hs00609526_m1); DRRF
(Hs00259103_m1); COMT (Hs02511558_s1); MAOA
(Hs00165140_m1); DAT (Hs00997371_m1).

Immunostaining

2 x 105 cells were grown on coverslips for 2 days in 1%
oxygen. Then the cells were washed thrice with PBS and
fixed for 20 min with 4% formalin. After fixation the cov-
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erslips were washed thrice with PBS, permeabilized with
0.1% Triton-X100, washed with PBS and blocked in PBS
containing 5% fetal calf serum (FCS) for 1.5 hrs. a-DRD3
(sc-9114, Santa Cruz Biotechnology) and o-DRD4
(AB1787P, Millipore Co.) antibodies were diluted 1:50
and 1:250, respectively, in 1% FCS/PBS and applied to the
cells overnight. After washing with FCS/PBS, the cells were
incubated with diluted (1:1000), Alexa488-conjugated
anti-rabbit secondary antibodies for 60 min, washed with
PBS and mounted on glass slides with Mowiol (Poly-
sciences). Fluorescence images were obtained and photo-
graphed in a Leitz Dialux 20 EB microscope equipped
with epifluorescence optics. Staining intensities were
quantitated by the ImageJ image processing software.

Statistical analysis

Statistical analysis was performed with one-way analysis
of variance (ANOVA) followed by the Tukey-Kramer Mul-
tiple Comparison Test (GraphPad InStat software).
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