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Abstract
Background: Gap junction proteins, connexins, are expressed in most endocrine and exocrine
glands in the body and are at least in some glands crucial for the hormonal secretion. To what
extent connexins are expressed in neurons releasing hormones or neuropeptides from or within
the central nervous system is, however, unknown. Previous studies provide indirect evidence for
gap junction coupling between subsets of neuropeptide-containing neurons in the paraventricular
nucleus (PVN) of the hypothalamus. Here we employ double labeling and retrograde tracing
methods to investigate to what extent neuroendocrine and neuropeptide-containing neurons of
the hypothalamus and brainstem express the neuronal gap junction protein connexin 36.

Results: Western blot analysis showed that connexin 36 is expressed in the PVN. In bacterial
artificial chromosome transgenic mice, which specifically express the reporter gene Enhanced
Green Fluorescent Protein (EGFP) under the control of the connexin 36 gene promoter, EGFP
expression was detected in magnocellular (neuroendocrine) and in parvocellular neurons of the
PVN. Although no EGFP/connexin36 expression was seen in neurons containing oxytocin or
vasopressin, EGFP/connexin36 was found in subsets of PVN neurons containing corticotropin-
releasing hormone (CRH), and in somatostatin neurons located along the third ventricle.
Moreover, CRH neurons in brainstem areas, including the lateral parabrachial nucleus, also
expressed EGFP/connexin 36.

Conclusion: Our data indicate that connexin 36 is expressed in subsets of neuroendocrine and
CRH neurons in specific nuclei of the hypothalamus and brainstem.

Background
Emerging evidence supports a role for gap junctions, inter-
cellular channels that permit a direct exchange of small
molecules between adjacent cells, in secretion of hor-
mones [1]. Gap junctions are composed of protein subu-
nits called connexins, which are encoded by a gene family

with more than 20 members in mammals [2] and are
expressed in a majority of organs, including most of the
endocrine and exocrine glands in the body [1]. At least 10
connexins with differing cell specificities are expressed in
mammalian nervous systems; connexin 36 [3,4], con-
nexin 45 [5] and connexin 30.2 [6] are considered to be
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preferentially expressed by neurons. Interestingly, con-
nexin 36 has also been reported to affect synchronization
of pancreatic islets and release of the peptide insulin [7].
To what extent connexin 36 affects hormone and neu-
ropeptide release from and within the central nervous sys-
tem is, however, unknown.

Neuropeptide-releasing neurons in the hypothalamus
and other brain areas are known to participate in coordi-
nation of autonomic, endocrine, and behavioral func-
tions maintaining the homeostasis of the organism. The
neuropeptides oxytocin, vasopressin, corticotropin-releas-
ing hormone (CRH), and somatostatin, all released from
the paraventricular nucleus of the hypothalamus (PVN)
into the blood stream and the central nervous system, are
all crucial for these functions [8-11].

Temporal patterns of action potentials in PVN neurons
are notable; when stimulated the magnocellular oxytocin
and vasopressin cells show characteristic changes in elec-
trical activity [12,13]. Pulsatile release of oxytocin, such as
that observed during lactation, is achieved by synchro-
nous firing of a fixed population of cells, whereas contin-
uous release of vasopressin involves the asynchronous
discharge of a variable number of neurons recruited in
proportion to the stimulus intensity. As neuronal gap
junctions are essential for synchronous firing in many
brain areas [14,15], gap junctions between neuropeptide-
containing cells could thus be a possible mechanism to
explain the characteristic firing patterns of PVN neurons
[16]. Intriguingly, dye-coupling studies and electrophysi-
ological experiments in rats have provided evidence for
the presence of gap junctions between neurons in both
the PVN and the SON [17-21]. The identity of the proteins
that comprise these putative gap junctions has however
not been established.

In order to investigate connexin 36 expression within the
PVN, we used Western blot analysis. Furthermore, bacte-
rial artificial chromosome (BAC) transgenic mice (EGFP/
connexin 36 mice) which specifically express Enhanced
Green Fluorescent Protein (EGFP) under the control of
the connexin 36 promoter were used to further explore to
what extent neuroendocrine as well as neuropeptide-con-
taining cells in hypothalamic and brainstem nuclei con-
tain connexin 36.

Methods
Animals
All animal protocols were approved by The Rockefeller
University Institutional Animal Care and Use Committee.
All animal procedures were performed according to the
National Institutes of Health and institutional animal care
and use guidelines. Adult female and male Swiss-Webster

mice were used for the Western blot experiments. All mice
were housed on 12:12-h light/dark cycle (lights on at
11.00 h), and food and water were available ad libitum.

The EGFP/connexin 36 mice (a gift from Professor Nath-
aniel Heintz, The Rockefeller University, New York, NY)
was made by homologous recombination of a connexin
36 gene-containing BAC (RP23-222L4) comprising an
EGFP insert, according to the strategy previously described
[22]. This approach does not interfere with the two func-
tional copies of the connexin 36 gene. As the BAC com-
prises more than 100 kb of flanking DNA both upstream
and downstream of the connexin 36, it contains all regu-
latory sequences needed for an accurate expression of the
connexin 36 gene [23,24].

Western-blot analysis
Three adult male and three adult female Swiss-Webster
mice were decapitated and the following brain regions
were dissected according to the procedure previously
described [25] and rapidly frozen: PVN, suprachiasmatic
nucleus, and the reticular nucleus of the thalamus. Tissues
were homogenized in a buffer containing 50 mM Tris-
HCl, 10 mM MgCl2, 150 mM; NaCl, 1% Triton-X 100, 1
mM sodium orthovanadate, 1 mM phenylmethylsulpho-
nyl fluoride and protease inhibitor cocktail (Roche, Basel,
Switzerland). Proteins were separated electrophoretically
in 10% polyacrylamide gels and transferred to nitrocellu-
lose membranes (Bio-Rad Laboratories, CA) in standard
Tris-glycine transfer buffer. Membranes were blocked for
1 h 30 min at room temperature in Tris Buffered Saline-
Tween-20 (TBST) (20 mM Tris-HCl, pH 7.4, 150 mM
NaCl with 0.05% Tween-20) containing 5% nonfat milk
powder and incubated overnight at 4°C with the goat
connexin 36 polyclonal antibody sc-14904 (1:400; sc-
14904, lot: F192, Santa Cruz Biotechnology, Santa Cruz,
CA) [26] in TBST containing 5% non-fat dry milk. Mem-
branes were then washed four times in TBST during 1
hour, incubated with horseradish peroxidase-conjugated
bovine anti-goat IgG (1:10,000; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA) in TBST for 2 h, and washed three
times in TBST. Immunoreactive bands were revealed using
enhanced chemiluminescence (Western Lightning; Per-
kin-Elmer, MA). In order to demonstrate specificity of
connexin 36 immunoreactivity, primary antibody (4 μg)
was pre-incubated with 10× excess of the connexin 36
immunizing peptide (40 μg) (sc-14904P; lot: E0906;
Santa Cruz Biotechnology, Santa Cruz, CA) overnight,
and the Western blot procedure was repeated on fresh
samples. The immunizing peptide sc-14904P has a length
of 15–25 amino acids and corresponds to an amino acid
stretch of the C-terminus between position 269 and 319
of human connexin 36 (NCBI protein accession number
117688) [26].
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Immunohistochemistry
For immunohistochemistry, animals were anesthetized
with sodium pentobarbital and perfused transcardially
with 50 mL Phosphate Buffered Saline (PBS) followed by
50–100 mL of 4% paraformaldehyde. Brains were post-
fixed 2–24 h in the same fixative. After postfixation, brains
were stored at 4°C in 30% sucrose for at least 24 h and
coronally sectioned at 30 μm on a freezing microtome.

To better visualize cell bodies immunoreactive for CRH
and somatostatin in the brain, four EGFP/connexin 36
mice were treated with colchicine (50 pg; right lateral ven-
tricle; 48-hr survival) before perfusion.

In order to label neuroendocrine cells in the brain, 3 male
and 3 female EGFP/connexin 36 mice were injected (i.p.)
with 30 μl of 4% Fluorogold in 0.9% saline and sacrified
5 days later. As the Fluorogold does not cross the blood-
brain barrier, this procedure only labels cells in the brain
that project to areas that come into contact with fenes-
trated capillaries [27]. The brain was perfused and proc-
essed using the same protocols as for the other EGFP/
connexin 36 mice.

Free floating sections were washed in PBS for 3 × 15 min,
blocked with 3% normal goat serum with 0.5% Triton X-
100 for 1 h at room temperature, and subsequently incu-
bated in primary antibodies at 4°C for 48 hours. The sec-
tions were co-incubated with the rabbit anti-GFP
(1:2000–5000; A6455, lot 39587A, Molecular Probes,
Eugene, OR) and either anti-oxytocin (1:1000; T-5021, lot
050163-3, Peninsula Laboratories, San Carlos, CA), or
anti-vasopressin (1:1000; T-5048; lot: 031088-5, Penin-
sula Laboratories, San Carlos, CA) guinea pig polyclonal
primary antibodies [28,29] with subsequent incubation
for 1 h at room temperature in Alexa 488 goat anti-rabbit
(1:500; Molecular Probes, Eugene, OR) and Rhodamine
Red-X donkey anti-guinea pig (1:200; Jackson Immu-
noResearch Laboratories, West Grove, PA) secondary anti-
bodies. Alternatively, the chicken anti-GFP polyclonal
primary antibody (1:5000, GFP-1020; lot 1223FPO3,
Aveslab, Tigard, OR) was incubated together with either
anti-CRH (1:1000; T-4037; lot: 970177-1, Peninsula Lab-
oratories, San Carlos, CA), anti-somatostatin-14 (1:1000;
T-4103; lot: 010965-8, Peninsula Laboratories, San Car-
los, CA), anti-prepro-orexin (1:200; AB3096, lot
23091616, Chemicon, Temecula, CA) [30,31], anti-histi-
dine decarboxylase (1:200; RDI-PRO16045, Research
Diagnostics, Concord, MA) [32], anti-tyrosine hydroxy-
lase (1:500; AB152, lot 250407, Chemicon, Temecula,
CA) or anti-Fluorogold (1:1000; AB153; lot: 0509010863,
Temecula, Chemicon) rabbit polyclonal primary antibod-
ies with subsequent incubation for 1 h at room tempera-
ture in Alexa 488 goat anti-chicken (1:500; Molecular
Probes, Eugene, OR) and cy3 donkey anti-rabbit (1:200;

Jackson ImmunoResearch Laboratories, West Grove, PA)
secondary antibodies. After 3 × 15 min washing in PBS the
sections were mounted on Superfrost/Plus slides (Fisher
Scientific, Pittsburgh, PA), dried in a light-proof dessica-
tor, and coverslipped using ProLong Gold antifade rea-
gent (Molecular Probes, Eugene, OR).

Tissue analysis
Brain areas, PVN and others, containing neurons express-
ing CRH, prepro-orexin, and histidine decarboxylase,
were defined according to the Paxinos and Watson [33]
atlas. Sections from these brain areas were examined using
an inverted LSM 510 laser scanning confocal microscope
(Zeiss), and the images were captured with Zeiss LSM 510
(version 3.2) software.

Results
Expression of connexin 36 protein in the PVN
The expression of connexin 36 protein in the PVN was ver-
ified by Western blot analysis on tissue dissected and
pooled from 3 males and 3 females, and each sex was ana-
lyzed separately. Tissue from the reticular nucleus of the
thalamus [14] and suprachiasmatic nucleus of the
hypothalamus (SCN) [34] was included as a positive con-
trol. A single band corresponding to 36 kDa was identified
in all three brain regions in males and female mice (Fig.
1B; upper panels). The immunoreactivity was abolished by
pre-incubation with the blocking peptide (Fig. 1B; bottom
panels).

Top panels: Western blot analysis of connexin 36 protein expression in paraventricular nucleus of hypothalamus (PVN), suprachiasmatic nucleus of hypothalamus (SCN) and the reticular nucleus of the thalamus (Rt) tissue dissected from three male and three female miceFigure 1
Top panels: Western blot analysis of connexin 36 
protein expression in paraventricular nucleus of 
hypothalamus (PVN), suprachiasmatic nucleus of 
hypothalamus (SCN) and the reticular nucleus of the 
thalamus (Rt) tissue dissected from three male and 
three female mice. The molecular weight of the stained 
band corresponds to 36 kDa. Bottom panels: The immunore-
activity is abolished by pre-incubation with the connexin 36-
blocking peptide.
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Expression of EGFP from the connexin 36 promoter in the 
PVN
Coexpression of connexin 36 with neuropeptides of the
PVN was explored using BAC transgenic mice in which the
connexin 36 promoter drives EGFP expression. Cells con-
taining EGFP/connexin 36 were scattered through most
parts of the PVN. The majority of EGFP-positive cells were
small parvocellular neurons (Fig. 2A; 3A), but also some
large magnocellular neurons were observed (Fig. 2A; 3B).
EGFP-expressing cells were also distributed in the periven-
tricular zone (PeVZ) (Fig. 4A) at most anterior/posterior
levels of the hypothalamus.

Following injection of Fluorogold, staining of hypotha-
lamic neuroendocrine cells was observed under UV-light
in the PVN, SON, dorsomedial nucleus and arcuate
nucleus of hypothalamus in line with previous reports
[27]. Fluorogold labeling was detected in a minority of
EGFP/connexin 36 expressing neurons of the PVN, and in
a majority of EGFP-positive neurons along the third ven-
tricle (Fig. 2).

Expression of EGFP from the connexin 36 promoter in PVN 
neurons containing oxytocin, vasopressin, tyrosine 
hydroxylase, CRH, or somatostatin
No colocalization of EGFP could be seen with oxytocin
(Fig. 3A) or vasopressin (Fig. 3B) in the PVN, or with tyro-
sine hydroxylase (Fig. 3C) in the PeVZ. Previous studies
have shown that coupling is relatively infrequent between

Expression of EGFP/connexin 36 in a subset of Fluorogold-labeled neuroendocrine cells in PVNFigure 2
Expression of EGFP/connexin 36 in a subset of Fluor-
ogold-labeled neuroendocrine cells in PVN. Confocal 
photomicrographs show immunofluorescence for EGFP (A, 
D; green), Fluorogold (B, E; red), and their colocalization (C; 
yellow) for A, B and (F; yellow) for D, E. Photomicrographs D-
F show neurons from insets in A-C in higher magnification. 
The third ventricle is seen to the right in A-C. Scale bars = 
100 μm in A-C and 20 μm in D-F.

EGFP/connexin 36 neurons are intermixed with neuropep-tide or tyrosine hydroxylase positive cells in hypothalamic nucleiFigure 3
EGFP/connexin 36 neurons are intermixed with neu-
ropeptide or tyrosine hydroxylase positive cells in 
hypothalamic nuclei. EGFP/connexin 36 (green) was not 
colocalized with oxytocin (A; red), vasopressin (B; red) or 
tyrosine hydroxylase (C; red) neurons in the PVN. Although 
EGFP/connexin 36 expression (green) was seen in the lateral 
hypothalamus and in the tuberomammillary nucleus, no colo-
calization between EGFP and prepro-orexin (D; red) or 
between EGFP and histidine decarboxylase (E; red) was 
observed. Scale bars = 20 μm.

Some neurons coexpress EGFP/connexin 36 and somatosta-tin or CRH in the PVNFigure 4
Some neurons coexpress EGFP/connexin 36 and 
somatostatin or CRH in the PVN. (A-C) Confocal phot-
omicrographs show immunofluorescence for EGFP (A; green) 
and somatostatin (B; red), and their colocalization (C; yellow) 
in the periventricular zone at the anterior pole of PVN. (D-F) 
Confocal photomicrographs show immunofluorescence for 
EGFP (D; green) and CRH (E; red), and their colocalization 
(F;yellow) in the PVN. The third ventricle is seen to the left in 
A-C. Scale bars = 20 μm.
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unstimulated oxytocinergic and vasopressinergic neurons,
whereas stimuli such as dehydration [35] and lactation
[19,36] increase the level of dye transfer between magno-
cellular neurons. Therefore, colocalization experiments of
EGFP/connexin 36 and oxytocin or vasopressin were also
conducted in four EGFP mice dehydrated for 24 hours
before sacrifice. However, also in these animals no coex-
pression between oxytocin or vasopressin and EGFP was
detected (data not shown).

As seen in Figure 4 there were some EGFP-positive cells in
the PVN/PeVZ that coexpressed CRH or somatostatin.
Neurons expressing EGFP and somatostatin were found
along the third ventricle mainly in the dorsal parts of
PeVZ (Fig. 4A–C), whereas those expressing both EGFP
and CRH were localized in medial parts of PVN (Fig. 4D–
F).

Expression of EGFP from the connexin 36 promoter in 
hypothalamic neurons containing orexin and histamine
Although EGFP/connexin36 and prepro-orexin cells were
located in the same areas of the lateral hypothalamus, no
colocalization was observed (Fig. 3D). In more posterior
regions, EGFP positive cells were seen in tuberomammil-
lary nuclei of the hypothalamus. Although EGFP/con-
nexin 36-positive cells are adjacent to histaminergic cells
in the tuberomammillary nuclei, we observed no colocal-
ization with the histamine synthesizing enzyme, histidine
decarboxylase (HDC) (Fig. 3E).

Expression of EGFP/connexin 36 in CRH neurons of extra-
hypothalamic nuclei
Since EGFP/connexin 36 colocalized with CRH in the
PVN, and it is well known that CRH neurons are distrib-
uted throughout the brain, we further explored to what
extent EGFP/connexin 36 was expressed in CRH neurons
in other brain areas. No double-labeled cells were seen in
other hypothalamic nuclei, in the bed nucleus of stria ter-
minalis or in the amygdala. A striking overlap was how-
ever seen in the lateral parabrachial nucleus comprising a
well-defined group of CRH neurons. A clear majority of
CRH neurons in the lateral parabrachial nucleus
expressed EGFP (Fig. 5A–C). Colocalization of EGFP and
CRH was also seen along the fourth ventricle in the
medial vestibular nucleus (Fig. 5D–F) and in the preposi-
tus nucleus (data not shown).

Discussion
The present study supports previous studies [20,37] show-
ing expression of the neuronal gap junction protein, con-
nexin 36, in the PVN. Our results also provide evidence,
for the first time, of colocalization between connexin 36
and CRH in neurons of the PVN and of specific brainstem
nuclei.

The connexin 36 protein is a membrane protein shown to
be expressed in dendrites rather than in somata of neu-
rons in the brain. Accordingly, previous dye coupling
studies indicate a dendritic location of the gap junctions
in PVN neurons [16]. Further, available anti-connexin 36
antibodies give rise to a 'punctate' staining pattern, and
require delicate experimental conditions in order to work.
Similarly, some of the peptides of the current study are
mainly located in the axons, which for this study demands
specific experimental conditions (i.e. pre-treatment with
colchicine). Taken together, these cellular localizations
and experimental conditions make it difficult to conduct
regular colocalization studies using antibodies against the
actual proteins. As the antigenicity of the EGFP protein is
maintained during the required experimental conditions
we used EGFP/connexin 36 transgenic mice in order to
investigate coexpression patterns. These mice have a
robust expression of EGFP in the PVN and other brain
regions shown to contain connexin 36 protein [37,38].

A large number of studies using dye coupling have pro-
vided indirect evidence for gap junction communication
between oxytocin and vasopressin containing neurons in
the PVN [16,17,20], respectively. Our data using EGFP/
connexin 36 transgenic mice suggest that connexin 36 is
expressed in neuroendocrine cells of PVN and PeVZ but
not in neurons containing oxytocin or vasopressin, nei-
ther in unstimulated nor in stimulated animals. This
result raises the possibility that other neuronal gap junc-
tion proteins may be enabling the proposed communica-
tion between magnocellular neurons in the PVN.

Expression of EGFP/connexin 36 in CRH neurons of the lat-eral parabrachial nucleus (A-C) and of the medial vestibular nucleus (D-F)Figure 5
Expression of EGFP/connexin 36 in CRH neurons of 
the lateral parabrachial nucleus (A-C) and of the 
medial vestibular nucleus (D-F). Confocal photomicro-
graphs show immunofluorescence for EGFP (A, D; green), 
CRH (B, E; red), and their colocalization (C, F; yellow). Scale 
bars = 20 μm.
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As neither electrotonic coupling nor gap junctions have
been reported in neurons of the PVN containing CRH, our
results showing EGFP/connexin 36 expression in these
neurons are intriguing. However, since the number of
CRH neurons in the PVN expressing EGFP/connexin 36 is
low, the functional relevance of this colocalization is not
obvious. Nevertheless, neural net simulations in our lab-
oratory using data modeling suggest that a small subset of
coupled neurons can have great implications for the pop-
ulation of neurons they belong to (Weingarten et al,
unpublished data). Moreover, as mentioned above, previ-
ous studies show that neuronal coupling among PVN
neurons is increased by stimulation. To what extent phys-
iological stressors are important for connexin expression
and gap junctional coupling in CRH neurons needs to be
further explored.

As CRH is expressed in several specific brain nuclei [11]
we further investigated if EGFP/connexin 36 was colocal-
ized with CRH in additional brain areas outside the
hypothalamus. In contrast to the PVN, where a small sub-
set of CRH neurons were EGFP/connexin 36 positive, a
majority of CRH neurons in the lateral parabrachial
nucleus also expressed EGFP/connexin 36. Parabrachial
neuronal projections are widely distributed throughout
the brain [39] and are involved in the regulation of vis-
ceral, cardiovascular, respiratory [40] and taste [41]
responses. Interestingly, electrical coupling and synchro-
nization of taste-sensitive neurons in parabrachial
nucleus has been reported [42]. Furthermore, a consider-
able overlap between EGFP and CRH was also seen along
the fourth ventricle in medial vestibular nucleus and in
prepositus nucleus. These brainstem areas are known to
comprise CRH neurons [11,43] and have previously been
reported to contain connexin 36 [38]. As no overlap
between EGFP and CRH was seen in the preoptic area, the
bed nucleus of stria terminalis or in the amygdala, a spe-
cific role for connexin 36 for CRH neurons in some brain
areas, but not in others, is indicated.

Our studies of EGFP-positive neurons in the PeVZ show
that most of these cells express somatostatin and project
to the bloodstream, that is, they stained for somatostatin
and contained the retrograde tracer Fluorogold injected
peripherally. To what extent connexin 36 may affect
somatostatin release from these neuroendocrine cells,
maybe using mechanisms similar to those involved in the
release of the peptide hormone insulin from pancreatic
islets [7], deserves further study.

The EGFP/connexin 36 expression pattern seen in the lat-
eral hypothalamus and in the tuberomammillary nucleus
was in line with previous investigations of connexin 36
mRNA [37,44]. No EGFP expression was however seen in
neurons producing orexin or histamine, located in these

two areas, respectively. The close proximity of neurons
expressing EGFP to neurons producing orexin or hista-
mine is however intriguing and its potential relevance
deserves further investigation.

As the EGFP expression of the EGFP/connexin 36 BAC
transgenic mice delineates cells expressing connexin 36,
but does not provide any information regarding the
number or functionality of the connexin proteins of these
cells, further studies are necessary to address these issues.
In order to confirm our findings indicating colocalization
between connexin 36 and CRH in specific brain regions
new immunohistochemical protocols, in which these two
antigens can be investigated together, must be developed.

Conclusion
Our results contribute independent data sets indicating
that the neuronal gap junction protein connexin 36 is
found in the PVN. In EGFP/connexin 36 BAC transgenic
mice, subsets of EGFP-positive neurons of the PVN and
PeVZ project to the bloodstream, and/or contain somato-
statin or CRH. Furthermore, a majority of CRH neurons of
the parabrachial nucleus expressed EGFP/connexin 36.
The functional implications of these findings need to be
addressed in future studies.
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