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Abstract
Background: Metalloproteinase inhibitors can protect mice against experimental autoimmune
encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Matrix metalloproteinase-9
(MMP-9) has been implicated, but it is not clear if other MMPs are also involved, including
matrilysin/MMP-7 – an enzyme capable of cleaving proteins that are essential for blood brain barrier
integrity and immune suppression.

Results: Here we report that MMP-7-deficient (mmp7-/-) mice on the C57Bl/6 background are
resistant to EAE induced by myelin oligodendrocyte glycoprotein (MOG). Brain sections from
MOG-primed mmp7-/-mice did not show signs of immune cell infiltration of the CNS, but MOG-
primed wild-type mice showed extensive vascular cuffing and mononuclear cell infiltration 15 days
after vaccination. At the peak of EAE wild-type mice had MMP-7 immuno-reactive cells in vascular
cuffs that also expressed the macrophage markers Iba-1 and Gr-1, as well as tomato lectin. MOG-
specific proliferation of splenocytes, lymphocytes, CD4+ and CD8+ cells were reduced in cells
isolated from MOG-primed mmp7-/- mice, compared with MOG-primed wild-type mice. However,
the adoptive transfer of splenocytes and lymphocytes from MOG-primed mmp7-/- mice induced
EAE in naïve wild-type recipients, but not naïve mmp7-/- recipients. Finally, we found that
recombinant MMP-7 increased permeability between endothelial cells in an in vitro blood-brain
barrier model.

Conclusion: Our findings suggest that MMP-7 may facilitate immune cell access or re-stimulation
in perivascular areas, which are critical events in EAE and multiple sclerosis, and provide a new
therapeutic target to treat this disorder.
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Background
Multiple sclerosis (MS) is an autoimmune disorder marked
by the infiltration of pathogenic T cells into the central
nervous system (CNS) that cause inflammation and oli-
godendrocyte cell death. In an animal model of MS, called
experimental autoimmune encephalomyelitis (EAE), vacci-
nation with CNS-myelin-derived peptides triggers the
expansion of oligodendrocyte-specific T cells and a patho-
logical profile that includes CNS inflammation, demyelina-
tion, and paralysis. Transmigration of pathogenic T cells
across the blood-brain barrier (BBB) is facilitated by the
expression of cell adhesion molecules and proteinases that
degrade the ECM [1]. The discovery that EAE can be pre-
vented by broad spectrum metalloproteinase inhibitors
implicated this large family of enzymes in disease progres-
sion [1-5] and has led to recent clinical trials [6]. Matrix
metalloproteinases (MMPs) are extracellular enzymes that
can cleave ECM and non-matrix proteins, including lam-
inin, collagen, cytokines, other proteinases, and the ectodo-
mains of several membrane proteins. MMPs are usually
secreted as pro-enzymes that can be cleavage-activated by
plasminogen activators, trypsin, other MMPs, and oxida-
tion. Elevated levels of MMP-2, MMP-7 and MMP-9 have
been reported in human MS patients, and in brain and spi-
nal cord extracts from EAE-induced rodents [7-17]. In a
delayed-type hypersensitivity model for MS, MMP-7 was
found to be the most up-regulated MMP, compared with
MMP-2,3,8,9,10,11,12,13,14,15 and 16 [11].

Within tissues, MMPs usually reside in extracellular spaces
as inactive proforms, and factors that activate even a small
proportion of those MMPs have significant biological
effects. Therefore, determining which factors contribute to
MMP activity in MS will be critical to understanding the
role(s) these enzymes play in this disorder. Cerebrospinal
fluid levels of MMP-9 activity are elevated in MS patients
and in rodent models of EAE [18], and young MMP-9
knockout mice (4 weeks) are resistant to EAE [19]. MMP-2
plays a critical role in angiogenesis and vascular remodeling
[20]. Although MMP-2 expression does not increase in MS
or EAE, MMP-2 activation may contribute to localized per-
meabilization of the cerebrovasculature. MMP-2 and MMP-
9 are structurally similar gelatinases that can each be acti-
vated by MMP-7 [21]. MMP-7 can also cleave many EAE-
relevant substrates, including laminin, type IV collagen
[22], β4-integrin [23], VE-cadherin [24], E-cadherin [25-
27] and the immune suppressor Fas ligand (FasL) [28]. Fur-
ther, MMP-7 has been reported as necessary for the trans-
epithelial efflux of immune cells in bleomycin-treated
lungs [29], which is similar to the extravasation that
immune cells must make in EAE and MS.

Myelin-specific T cells can be detected in the blood of MS
patients and EAE-induced mice even during periods of
remission, when they no longer persist in the CNS. Tight
junctions between microvascular endothelial cells within

the brain prevent the direct entry of macromolecules and
blood-borne cells, forming the BBB. Compromise of BBB
integrity facilitates immune cell access to the CNS and is
essential for MS and EAE. For example, MRI detection of
gadolinium accumulation in the brain lesions of MS
patients is an indicator of compromised BBB integrity and
a reliable predictor of pending disease activity. Factors
that affect the cell-to-cell contacts of cerebrovascular
endothelial cells, or their viability, can reduce BBB integ-
rity and increase immune cell access to the CNS. VE-cad-
herin is an important component of tight junctions
between endothelial cells and is also a substrate for cleav-
age by both MMP-7 [24] and MMP-9 [30]. The two layers
or ECM that surround the cerebrovasculature contain
laminin and type IV collagen, which are cleaved by MMP-
7 [22], as well as collagens and elastins are cleaved by
MMP-9 [31].

In addition to the BBB, immune cells actions are restricted
within the CNS action by the expression of cell death lig-
ands CD95L/Fas ligand/FasL and TRAIL that can trigger
apoptosis in activated T cells and myeloid cells. FasL is a
potent inducer of apoptosis in activated T cells [32] and its
expression is elevated in response to injuries that compro-
mise BBB integrity [15,33-35]. Facial nerve damage locally
increases FasL expression and T cell apoptosis around the
facial nucleus in EAE-induced mice [36]. The availability
of FasL is closely regulated at the transcriptional and post-
translational levels, which includes proteolytic cleavage of
its receptor binding region by MMP-3 [37] and MMP-7
[28,38]. While membrane-bound FasL has potent pro-
apoptotic activity for activated T cells, cleaved or soluble
FasL (sFasL) shows differential effects, depending on the
disease model and specific cell types [39,40]. Moreover,
sFasL has a chemotaxic effect on mononuclear cells,
which can be blocked by anti-FasL antibodies [41].

Here, we used MMP-7-deficient (mmp7-/-) mice to investi-
gate the role of this proteinase in EAE. Wild-type (wt) and
mmp7-/- mice were compared for clinical and immunolog-
ical responses to an encephalitogenic fragment of myelin
oligodendrocyte protein peptide (MOG35–55). Localiza-
tion of MMP-7 expression in the CNS was examined dur-
ing EAE in MOG-primed mice at the peak of EAE. MOG-
specific proliferation of splenocytes, lymphocytes, CD4+,
and CD8+ T cells were compared in both strains of mice.
We also used adoptive transfer to assess the encephalito-
genic potential of T cells from wt and mmp7-/- mice to
induce EAE in recipients of both strains. Finally, we tested
the effects of active MMP-7 on endothelial cell connectiv-
ity using an established in vitro model of the BBB.

Results
mmp7-/- Mice Are Resistant to EAE
To determine if MMP-7 plays a critical role in EAE we
compared the responses of wt and mmp7-/- mice, congenic
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with the C57Bl/6 background, to MOG35–55. Clinical evi-
dence of EAE was observed in 9/12 wt mice (75%), with
scores up to 2.5 and an average peak near 1.6 (Figure 1a).
Clinical scores showed paralysis beginning 12–14 days
after MOG injection, which was consistent with previous
reports of mice with this genetic background [42,43].
None of the mmp7-/- mice showed any paralysis (0/9, 0%).
Age-matched wt and mmp7-/-mice were injected simulta-
neously in 3 separate experiments, with similar results.

Haematoxylin and eosin staining of brain sections from
wt mice isolated 15 days after MOG injection, near the
peak of EAE, showed extensive mononuclear cell infiltra-
tion (Figure 1b, d). Perivascular cuffing, a classic feature of
encephalitis, was not seen in the brains of MOG-primed
mmp7-/- mice (Figure 1c, e). wt mice also showed patches
of demyelination adjacent to perivascular cuffs that were
infiltrated by mononuclear cells and contained pycnotic
nuclei (Figure 1f), all of which were absent in mmp7-/-

mice (Figure 1g). These findings indicate that mmp7-/-

mice are resistant to a stimulus that induces EAE in wt
mice.

Myeloid Cells Are the Primary Expressers of MMP-7 during 
EAE
MMP-7 expression in wt mice was localized by immunos-
taining sections from brains that were isolated during
EAE, 15 days after vaccination. Previous reports have
described elevated MMP-7 levels in brain and spinal cord
during delayed type hypersensitivity and EAE, up to 500-
fold over controls [11,13]. We observed strong MMP-7
immunostaining in perivascular cuffs (Figure 2a, b; see
Additional file 1), in cells that co-stained for the mono-
cyte marker Iba-1 (Figure 2c–f). Most MMP-7/Iba-1
immunopositive cells were in close proximity to vascular
structures, but several cells were within the parenchyma
and notably enlarged, possibly due to active phagocytosis.
Further immunostaining revealed that MMP-7 also co-
localized with tomato lectin and Gr-1 (see Additional file
2), common though less specific markers for myeloid
cells. Although MMP-7 is an extracellular proteinase, it
binds strongly to heparan sulphate on the surface of
MMP-7-producing cells [44]. Interestingly, heparan sul-
fate proteoglycans have been reported to mediate mono-
cyte migration across the BBB [45].

Endothelial cells in the cerebrovasculature are surrounded
by astrocyte end-feet processes, which regulate BBB integ-
rity. Reactive astrocytes produce a variety of factors in
response to injury and infection, so we examined whether
astrocytes expressed MMP-7 during EAE by co-immunos-
taining for glial fibrillary acidic protein (GFAP). Mice with
high EAE clinical scores showed robust MMP-7 immuno-
reactivity around inflamed vascular structures, but within
the parenchyma MMP-7 immunoreactivity did not co-

localize with GFAP-positive cells (Figure 3a–d). Although
astrocyte end-feet were adjacent to cells with strong MMP-
7 staining, GFAP-positive cells did not appear to express
the enzyme. These findings indicate that macrophages
and not astrocytes are the primary producers of MMP-7
during EAE, which is consistent with other reports [46-
48].

The choroid plexus consists of highly vascularized struc-
tures that produce cerebrospinal fluid (CSF) within brain
ventricles. Although choroid plexus has highly fenestrated
capillaries, blood components are kept separate from cer-
ebrospinal fluid by tight junctions between specialized
ependymal cells in the outer layer, constituting the blood-
CSF barrier (BCB). Between fenestrated capillaries and
ependymal cell layers is a basal lamina composed largely
of collagen in which we observed strong immunoreactiv-
ity for MMP-7. Notably, CD4+ T cells were observed
between these layers but did not show MMP-7 immuno-
reactivity (Figure 3e–g). Accumulation of MMP-7 within
the choroid plexus may degrade components of the basal
lamina and connective tissue, or disrupt cadherin-medi-
ated contacts. Indeed, confocal microscopy revealed
patches of MMP-7 that appeared to breach the ependymal
layer of the choroid plexus and become continuous with
the CSF-containing lateral ventricle (Figure 3c). Signifi-
cantly, such breaches in the BCB would permit the passage
of immunoglobulins and serum proteins into the CSF, an
important diagnostic indicator of MS.

MMP-7-Deficiency Diminishes MOG-specific T cell 
Responses
To determine whether a lack of MMP-7 prevents MOG-
specific immune responses, we assayed representative cell
populations from wt and mmp7-/- mice, in vitro. Spleno-
cytes and lymphocytes were isolated from mice 15 days
after MOG-injection and then cultured with MOG and
3H-thymidine. After 4 days, splenocytes from both wt and
mmp7-/- mice showed higher 3H-thymidine incorporation
in response to MOG (10, 20, or 30 μg/ml) when com-
pared with controls (see Additional file 3). However,
MOG-induced proliferation of mmp7-/- splenocytes was
less than wt cells. Primary lymphocytes from MOG-
primed mmp7-/- mice also showed less proliferation in
response to MOG in vitro, compared with wt. Higher den-
sity lymphocyte cultures showed similar results (not
shown). These findings demonstrated that splenocytes
and lymphocytes from mmp7-/- mice have lower antigen-
specific proliferation in response to MOG, in vitro.

The proliferation of T cells can only be inferred from 3H-
thymidine incorporation studies, so we investigated
MOG-specific responses of CD4+ and CD8+ T cells using
CFSE pre-labelling and FACS analysis. After 4 days in vitro,
control CD4+ T cells from wt mice proliferated up to 4 gen-
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Wild-type and mmp7-/- mice show respond differently to vaccination with MOG35–55Figure 1
Wild-type and mmp7-/- mice show respond differently to vaccination with MOG35–55. (a) Mean clinical EAE scores 
from wt (n = 12) and mmp7-/- (n = 9) mice injected with MOG35–55: graphed values are from two separate experiments. The 
first cadre of mice were sacrificed at day 15 for histological analysis (blue circles). mmp7-/- mice did not show clinical signs of 
EAE. Error bars represent SEM (*p < 0.05; **p < 0.005). (b) Haematoxylin and eosin staining of a brain section from a MOG-
primed WT mouse shows perivascular cuffing of mononuclear cells. (c) Haematoxylin and eosin staining of a comparable sec-
tion from a MOG-primed mmp7-/- mouse shows no vascular cuffing. (d) Spinal cord sections from MOG-primed wt mouse 
showing cuffing (e) that was not seen in spinal cord sections from MOG-primed mmp7-/- mice. (f) Spinal cord section from a 
MOG-primed wt mouse showing immune cells infiltration at the lateral edge and deeper into the parenchyma, (g) which was 
not seen in any spinal cord sections from similarly treated mmp7-/- mice. Scale bars = 100 μm.
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erations, with further divisions making a negligible com-
ponent (Figure 4a). Further proliferation was induced by
IL-2 with a small, but measurable proportion of cells
dividing up to 9 generations (Figure 4b). MOG induced a
higher proportion of cells beyond 4 generations than did
IL-2, constituting nearly 9.5% of the original cells that
became CD4+ (Figure 4c). CD4+ T cells isolated from
MOG-primed mmp7-/- mice showed similar responses to
IL-2, but less proliferation in response to MOG (Figure
4d–f). Although MOG-specific proliferation of CD4+ T
cells from MOG-primed mmp7-/- mice was less with MOG-
primed wt, MOG-specific proliferation was present.

In addition to CD4+ T cells, the transfer of myelin-specific
CD8+ T cells can also cause severe EAE [34]. CFSE analysis
showed that CD8-expressing T cells did not proliferate
past 4 generations in control cultures (Figure 5a). How-
ever, significant proliferation of up to the 10th generation
was observed in response to IL-2 (Figure 5b) and MOG
(Figure 5c). CD8+ T cells isolated from mmp7-/- mice also
showed minimal proliferation in control media (Figure
5d) and substantial proliferation in response to IL-2 (Fig-
ure 5e), but again MOG-induced proliferation was
reduced compared with wt (Figure 5f).

Confocal and epifluorescence images of MMP-7 immuno-reactivity in the CNS of wt mice during EAEFigure 2
Confocal and epifluorescence images of MMP-7 
immuno-reactivity in the CNS of wt mice during 
EAE. Brain sections were taken from a wt mouse 15 days 
after vaccination with MOG, when the EAE clinical score was 
1. (a) Fluorescence microscope image of MMP-7 immunos-
taining in the brain of a wt mouse, scale bar = 50 μm. (b) 
Confocal microscope image of MMP-7 immunostaining in 
another region, scale bar = 10 μm. (c) MMP-7 immunostain-
ing (red) shows strong labelling of many cells in the vascular 
cuff, (d) which co-localizes with Iba-1 immunoreactivity 
(green). (e) DAPI staining reveals the nuclear morphology of 
all cells in the cuff and surrounding parenchyma. (f) A merged 
image of c-e shows co-localization of Iba-1 and MMP-7 in the 
same cells. Arrows indicate double-stained cells in the paren-
chyma that have a spread-distended appearance. The lumen 
of the blood vessel is indicated with "v", scale bar = 100 μm.

MMP-7 immunoreactivity does not co-localize with the astrocyte marker GFAP, or CD4, in the CNS of wt mice dur-ing EAEFigure 3
MMP-7 immunoreactivity does not co-localize with 
the astrocyte marker GFAP, or CD4, in the CNS of 
wt mice during EAE. Brain sections were taken from a wt 
mouse 15 days after vaccination with MOG, when the EAE 
clinical score was 1. (a) MMP-7 (green) and (b) GFAP (red) 
immunopositive cells. (c) DAPI staining of nuclei. (d) Merged 
image showing that GFAP and MMP-7 do not co-localize to 
the same cells although there are interactions between these 
two immunopositive populations. Scale bar = 50 μm. (e) 
CD4 immunostaining in the choroid plexus. Intensity of the 
red signal was increased to show choroid plexus structures, 
from auto-fluorescence. (f) MMP-7 immunostaining (green) 
shows several immunopositive cells between endothelial 
sheets, on the vascular side. (g) Merged image of e and f 
shows that CD4+ and strong MMP-7 immunostaining do not 
co-localize. Arrow indicates continuity between an MMP-7 
immunopositive cell and the lateral ventricle.
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Transfer of T cells from MOG-primed Mice Induced EAE in 
wt but not mmp7-/- Recipients
We found that MOG-specific CD4+ and CD8+ T cell prolif-
eration was reduced in mmp7-/- mice, but still present, so
we tested if MOG-specific T cells from mmp7-/- mice were
encephalitogenic using adoptive transfer. To examine this
possibility we isolated splenocytes and lymphocytes from
MOG-primed mmp7-/- donors, re-stimulated with MOG in
vitro, and then adoptively transferred those cells into naïve
mmp7-/- and wt recipients. Within 4 days all wt recipients
(7/7) showed signs of paralysis that persisted for the
entire 25 day post-injection period (Figure 6). Although
EAE scores were low, difficulties with balance and grip-
ping a tilted cage top were apparent in all wt recipients. In

contrast, none of the mmp7-/- recipients (0/6) showed any
signs of EAE during the 25 day post-transfer period. These
findings indicate that mmp7-/- mice produce encephalito-
genic T cells that can cause disease in wt mice, even though
they have reduced T cell responses to MOG. In a reciprocal
study, we found that splenocytes/lymphocytes from
MOG-primed wt mice could also cause disease in wt mice
(3/3), with clinical scores of 1–2, but mmp7-/- recipients
were resistant to the encephalitogenic effects of those cells
(0/3). Therefore, mmp7-/- mice are resistant to encephalito-
genic T cells from mmp7-/- or wt mice.

MMP-7 Affects the Permeability of Brain Endothelial Cell 
Barriers
To test whether MMP-7 affects tight junctions between
cerebrovascular endothelial cells of the BBB, we used an

Generation analysis of CD4+ cells in mixed splenocyte/lym-phocyte cultures isolated from MOG-primed wt and mmp7-/- mice, using CFSEFigure 4
Generation analysis of CD4+ cells in mixed spleno-
cyte/lymphocyte cultures isolated from MOG-primed 
wt and mmp7-/- mice, using CFSE. (a, b) CD4+ cells from 
wt mice had a small response to IL-2, (c) and a more robust 
response to MOG (10 μg/ml). For a-c, percentages indicate 
the proportion of initial cells that divided beyond the 4th gen-
eration, which was the farthest significant generation for 
media-only controls shown in a. (d, e) CD4+ proliferation in 
response to IL-2 in mmp7-/- mice was comparable to that in 
wt cells. (f) MOG-induced proliferation was comparable to 
that from IL-2 stimulation – less than the responses of wt 
cells to MOG.

Generation analysis of CD8+ cells isolated from MOG-primed wt and mmp7-/- mice, using CFSEFigure 5
Generation analysis of CD8+ cells isolated from 
MOG-primed wt and mmp7-/- mice, using CFSE. (a, b) 
The proportion of IL-2-responsive progenitors that gave rise 
to CD8+ cells in wt mice was comparable to that observed 
with (d, e) MMP-7-/- mice. (c, f) MOG-responses were robust 
in wt, but not mmp7-/- progenitors. Percentages indicate the 
proportion of progenitors that surpassed the farthest gener-
ation of media-only controls (a, d).
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established in vitro model consisting of porous hollow
fibres and perfusion to replicate the pressure dynamics of
brain capillaries [49]. Primary rat brain micro-vascular
endothelial cells were grown inside the tubes and primary
rat-brain astrocytes outside. Constant media flow through
the lumen replicates the shear dynamics for vascular
endothelial cells that line the tubes. After several days
tight junctions connect endothelial cells lining the lumen
to the extent that a trans-endothelial electrical resistance
(TEER) can be measured. These junctions between
endothelial cells depend on VE-cadherin, a substrate for
MMP-7 [24]. We tested whether recombinant MMP-7
could alter permeability across these layers of brain
endothelial cells by measuring the TEER. MMP-7 added to
the brain-side (ECS) compartment did not decrease TEER
and even slightly increased TEER by an as yet undeter-
mined mechanism that may work through astroglia (Fig-
ure 7). However, MMP-7 affected the vascular endothelial
cells when placed on lumenal side (Lumen) and caused a
near-term 15–20% drop in TEER, with a subsequent drop
of 40–45% after 4 days (Figure 7). This loss of electrical
resistance is consistent with increased permeability of the
endothelial cell layer lining the lumen of the micro-capil-
laries. Therefore, high local concentrations of MMP-7, as
found on the surface of macrophages, can reduce the
integrity of endothelial cell-to-cell contacts and may facil-
itate the transmigration of immune cells across the BBB.

Discussion
High MMP-7 activity has been reported in demyelinating
MS lesions and in the cerebrospinal fluid of MS patients
[7-10,15], yet the role of this extracellular proteinase in
MS is still unclear. Here, we have shown that mmp7-/- mice
are resistant to MOG-induced EAE. Diminished T cell

responses to MOG make it less likely that EAE will
develop, but mmp7-/- mice still produce encephalitogenic
T cells that can cause disease in wt mice. Immuno-locali-
zation of MMP-7 in areas adjacent to vascular structures
suggests that it may facilitate immune access at the BBB. A
common diagnostic feature of MS is MRI-detectable
breaches of the BBB and spokes of demyelination that
project outwardly from a cerebrovascular core (Dawson's
fingers). Localization of MMP-7 to breaches of the BBB
suggests that it may act directly on BBB integrity. We tested
this possibility using an in vitro BBB model and found that
the direct exposure of brain endothelial cells to recom-
binant MMP-7 increased the permeability between those
cells. In contrast, MMP-7 did not increase permeability on
the brain side of the BBB, but it may have other effects.

Inside the BBB, MMP-7 may contribute to EAE by activat-
ing MMP-2 and MMP-9 (proform), or by reducing

mmp7-/- mice generate encephalitogenic T cells that produce EAE when transferred to wt recipientsFigure 6
mmp7-/- mice generate encephalitogenic T cells that 
produce EAE when transferred to wt recipients. 
Graph indicating EAE scores in wt (n = 7) and mmp7-/- (n = 6) 
recipients that received 20 × 106 re-stimulated splenocytes/
lymphocytes from MOG-primed mmp7-/- donors. Errors bars 
represent SEM (**p < 0.01; **p < 0.005).

Effects of MMP-7 on BBB permeability as measured in vitro by TEERFigure 7
Effects of MMP-7 on BBB permeability as measured 
in vitro by TEER. Electrical potential between the extracel-
lular side (ECS) and the luminal side as measured by TEER. 
After establishing the system, the TEER is typically ~650–700 
Ohm/cm2 (black). The addition of MMP-7 to the luminal side 
resulted in a 15–20% drop in TEER during a 2 h halt in flow 
(green). This drop in TEER continued over the next 4 days, 
eventually resulting in a 40% reduction in TEER. The addition 
of recombinant MMP-7 to the ECS (red) side did not result in 
a near or longer term decrease in TEER, and slightly increase 
TEER over the course of the experiment. These two graphs 
were made from different apparatus, run simultaneously.
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immune privilege by cleaving FasL [50]. As a potent
inducer of apoptosis in activated T cells, FasL is crucial to
the recovery phase of EAE. Mice with defective FasL
undergo more severe and prolonged EAE, compared with
WT mice [51]. Indeed, CNS injury models have shown
that a localized increase of FasL expression within the
CNS is a consistent response to breaches of the BBB
[33,34]. The potent activity of FasL can be attenuated by
shedding the Fas-binding domain by MMP-7 [28,38,39].
Macrophages that infiltrate the CNS and produce high
local concentrations of MMP-7 may cause localized shed-
ding of FasL and create discrete pockets of lowered
immune privilege within the CNS. This process could pro-
long the survival of activated T cells that would otherwise
die by activation induced cell death or FasL-induced
apoptosis. Interestingly, granulocyte macrophage colony
stimulating factor (GM-CSF) knockout mice are also
resistant to MOG-induced EAE [52]; however, their resist-
ance is attributed to attenuated MOG-specific T cell
responses, perhaps due to fewer antigen-presenting cells.
Variables that affect macrophage availability might be
expected to have a direct impact on MMP-7 production
near cerebrovascular structures and also affect EAE suscep-
tibility.

Within the brain MMP-7 may also contribute to memory,
motor and cognitive problems that often accompany MS
episodes. Recent studies have shown that MMP-7 and
MMP-9 can disrupt mature dendritic spines, causing them
to assume immature morphologies, which greatly reduces
the synaptic strength of excitatory synapses and can
impact memory and behaviour [53,54]. Furthermore,
EphB receptors are critically important for the formation
and maintenance of mature dendritic spines, and MMP-9
has recently been shown to cleave EphB [55]. Infiltrating
macrophages in perivascular cuffs or near demyelinating
lesions might produce enough MMP-7 to activate extracel-
lular pools of MMP-9 (proform) and disrupt synapse sta-
bility in nearby areas – even without demyelination or
overt pathology [56].

Several cytokines, including TNF-α, have been shown to
increase MMP-7 expression and have been repeatedly
linked with EAE and MS inflammation [57,58]. IFN-β is a
promising treatment for MS and has been shown to
repress MMP-7 and MMP-9 expression for patients with
relapsing-remitting MS [18,51]. Our findings suggest that
MMP-7 plays a role in the extravasation of immune cells
during EAE. MMP-7 expression adjacent to the cerebrov-
asculature and ependymal cells of the choroid plexus sug-
gests that metalloproteinase inhibitors could prevent EAE
by blocking MMP-7 activity at these sites. Interestingly,
hydroxamate-based metalloproteinase inhibitors can pre-
vent EAE, but may not be able to cross an intact BBB, so
their ability to prevent EAE would depend on actions after

the BBB has been compromised unless they work by
inhibiting MMPs outside of the BBB, such as MMP-7 on
circulating monocytes [29].

Conclusion
This study demonstrates that MMP-7 plays a critical role
in MOG-induced EAE in C57Bl/6 mice, although it is pos-
sible that stronger encephalitogenic stimuli (e.g. myelin
basic protein) in other mouse strains may respond differ-
ently to MMP-7 deficiency. The reduced response of CD4+

or CD8+ T cells to EAE, did not preclude the production of
encephalitogenic T cells, and may reflect an important
role for MMP-7 in the antigen-presentation or the special-
ized microenvironment of lymphoid organs. Immuno-
localization of MMP-7 to myeloid cells and cerebrovascu-
lar structures, along with its ability to increase the perme-
ability between endothelial cells, implicates this enzyme
in compromising BBB and/or BCB integrity, and suggests
that MMP-7 may have additional effects in the brain
parenchyma that extend beyond lymphocyte infiltration.

Methods
Induction of EAE
The generation and characterization of mmp7-/- mice on
the C57BL/6 background has been reported [59]. Mice
that had been back-crossed for at least 10 generations,
onto the C57Bl/6 background, were bred in the University
of California, Riverside (UCR) vivarium in accordance
with Institutional and NIH animal care and use guide-
lines. Age-matched mmp7-/- and wt (B6) mice were
injected at 7–18 weeks of age with 100 μl of CFA emulsion
containing 250 μg of recombinant MOG35–55, divided
into three sites on shaved backs. Recombinant MOG was
synthesized at the University of California Los Angeles
(UCLA) peptide core and was 97–99% pure. One and 3
days after MOG injections, mice were given intra-perito-
neal injections of 200 ng pertussis toxin each. Each day,
mice were scored for clinical signs of EAE as follows: 0 =
no EAE; 1 = total loss of tail tonicity; 2 = hind limb weak-
ness, impaired righting reflex, or forelimb impairment
alone; 3 = total paralysis of one or both hind limbs; 4 =
hind and forelimb paralysis; 5 = moribund, death [60].
Statistical analysis was done by paired Student-t Tests (2-
tailed) of wt and mmp7-/- clinical scores at each time-point.

Splenocyte and Lymphocyte Isolation
Spleen and draining lymph nodes were isolated from
experimental and control mice 15–24 days after post
MOG injection. Tissues were disrupted in complete RPMI
with 5–7 strokes of a glass Dounce (15 mL Pyrex). Single-
cell suspensions were prepared by passing homogenates
over a 70-μm sieve filter (BD, Franklin Lakes, NJ) and rins-
ing with 2 mL of complete RPMI. Cells were pelleted and
red blood cells lysed by resuspension in cold buffer (Red
blood cell lysis buffer, Sigma, St. Louis, MO) for 5 min on
Page 8 of 12
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ice. Next, cells were pelleted and resuspended in RPMI
1640 media containing 10% FCS (Hyclone, Logan, UT),
L-glutamine, sodium bicarbonate, sodium pyruvate,
essential and non-essential amino acids, vitamins, peni-
cillin/streptomycin, and β-mercaptoethanol (complete
RPMI), and maintained in a humidified CO2 incubator at
37°C. Viable cells were counted by trypan blue exclusion.

3H-Thymidine Measurement of Proliferation
Cells were isolated from 3 wt and 3 mmp7-/- mice 15 days
after vaccination with MOG, as described. Quadruplicate
wells of each condition consisted of 2 or 4 × 105 cells/well
in a 96-well plate, and cultured in the presence of 0, 10,
20 or 30 μg/mL MOG35–55 overnight at 37°C. Cells were
then pulsed with 1 μCi/well of 3H-thymidine (ICN Phar-
maceuticals, Costa Mesa, CA) for the last 4 h of culture,
and processed using a cell harvester (PHD, Cambridge
Technologies). Each sample was cut from the filter and
radioactivity measured with a scintillation counter. Mean
values from quadruplicates were used to generate prolifer-
ation responses that were normalized to the control con-
dition (0 μg/mL MOG) for cells from each animal. These
normalized proliferation responses were averaged for all
mice of each genotype.

CFSE Labelling and Analysis
Freshly isolated splenocytes and lymphocytes were
pooled, pelleted, and then resuspended in PBS at 6 × 107

cells/ml. An equal volume of PBS containing 10 μM car-
boxy-fluorescein diacetate succinimidyl ester (CFSE;
Molecular Probes, Inc. Eugene, OR) was added, then cells
were gently mixed and incubated for 20 min at 37°C.
Cells were pelleted and washed twice with PBS. Immedi-
ate FACS analysis of an aliquot determined cell labelling
efficiency, typically >99%, and those values were used as
baseline labelling of the parental generation. CFSE-
labelled cells were then resuspended (2.5 × 106 cells/ml)
in complete RPMI with 0, 10, or 15 μM MOG, or 25 units/
ml IL-2 and incubated at 37°C for 4 days. Aliquots of each
preparation were then labelled with fluorescently-conju-
gated (PE) anti-CD4, anti-CD8, or isotype-specific con-
trols (BD Biosciences, San Diego, CA) at 1 μg/106 cells, 25
min at 4°C. Cells were then rinsed with PBS (3×) and
fixed with an equal volume of 2% paraformaldehyde.
Data was acquired using a FACScan® (Becton Dickinson,
San Jose, CA), and analyzed using ModFit™ software pro-
liferation wizard (Becton Dickinson, San Jose, CA). Typi-
cally, 15–50,000 events were collected for each sample.

Adoptive Transfer
Primary splenocytes and lymphocytes were isolated from
MOG-primed mmp7-/- mice 10 days after vaccination and
cultured with 10 μg/ml MOG and 10 ng/ml IL-2 (2.5 ×
106 cells/ml) for 5 days. Recipient mice received 20 × 106

cells in 0.2 mL of PBS by tail-vein injection.

Immunostaining
Immediately following the removal of spleen and lymph
nodes each mouse was perfused (cardiac) with saline con-
taining heparin, saline alone, and then fresh 4% parafor-
maldehyde in PBS. The isolated cranium and spinal
column were post-fixed overnight in paraformaldehyde,
after which the brain and spinal cord were carefully
removed. Tissue was cryo-protected with increasing
sucrose concentrations and then sectioned on a cryostat
(7 μm), and stored at 4°C until use. Slide-mounted sec-
tions were warmed to 37°C for 10 min, rinsed with PBS,
and non-specific antigens blocked with either 10% BSA or
10% normal goat serum (NGS) for 1 h, depending on the
sources and specificities of the antibodies to be used. Anti-
bodies used were: mouse anti-MMP-7 (1:100; Dr. Carole
Wilson), rabbit anti-MMP-7 (1:100; Dr. Carole Wilson),
mouse anti-CD4-PE (1:100; BD Biosciences), mouse anti-
GFAP-PE (1:2000; Sigma), mouse anti-Gr-1 (BD Bio-
sciences), mouse Iba-1-FITC (1:100; Genetex, #1022-5).
Secondary antibodies used were FITC-conjugated anti-
rabbit IgG (1:100; Sigma) and Cy3-conjugated anti-rat
IgG (1:100; Molecular Probes); Alexa-488 conjugated
anti-mouse (1:1000; Invitrogen).

In vitro BBB Model
The system used has been described in detail previously
[61,62]. Briefly, primary rat-brain micro-vascular
endothelial cells were cultured on the lumen surface of
porous tubes, and grown with constant perfusion of
media through the lumen of the tubes. Outside the tubes
were grown primary rat astrocytes, which supplied signal-
ling molecules necessary to create tight junctions between
endothelial cells sufficient to be recorded as resistance.
Experiments were done at week 3 of EC-astrocyte co-cul-
ture in this dynamic in vitro BBB model when all tubes
were measured for resistance and only those showing sig-
nificant resistance were used. Active recombinant human
MMP-7 (Millipore, Temecula, CA) was added to the extra
capillary space (astrocyte) side of the system at 1 or 5 units
per mL (1st group of experiments), or to the lumenal
(endothelial) side at 1 unit per mL (2nd group of experi-
ments). In both experimental series MMP-7 was added
with continuous perfusion in one set of experiments, or
with a 1.5 h pause of flow followed by reperfusion in sep-
arate experiments. Permeability of the endothelial sheets
was measured by standard electrophysiological recording
as the trans-endothelial electrical resistance (TEER)
between the ECS and lumen.

Abbreviations
BBB: blood-brain barrier; BCB: blood-CSF-barrier; CFSE:
carboxy-fluorescein diacetate succinimidyl ester; CNS:
central nervous system; CSF: cerebrospinal fluid; EAE:
experimental autoimmune encephalomyelitis; ECM:
extracellular matrix; FasL: Fas ligand; GFAP: glial fibrillary
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Additional file 1
Movie from a confocal image stack showing MMP-7 immunopositive 
cells in a perivascular cuff from a MOG-primed wt mouse, during 
EAE. The mouse had been vaccinated with MOG 15 days prior and dem-
onstrated a clinical score of 1 at the time of sacrifice.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-10-17-S1.mov]

Additional file 2
Confocal microscopy shows co-localization of MMP-7 with tomato lec-
tin and Gr-1. (a) Confocal image of tomato lectin-stained cells (red) in 
a vascular cuff in the brain of a wt mouse during EAE, 15 days after vac-
cination with a clinical score of 1. (b) Confocal image of the same section 
in a showing MMP-7 immunostaining (green). (c) Merged image of 
boxes a and b shows co-localization of MMP-7 and tomato lectin in a 
perivascular accumulation of immune cells during EAE. (d) Confocal 
image of Gr-1 immunopositive cells (red) in the brain of a WT mouse dur-
ing EAE. (e) Confocal image of the same section in d showing MMP-7 
immunopositive cells (green). (f) Merged image of d and e shows co-local-
ization of MMP-7 and Gr-1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-10-17-S2.pdf]

Additional file 3
Proliferation responses of splenocytes and lymphocytes isolated from 
MOG-primed wt and mmp7-/- mice. (a) 3H-Thymidine incorporation 
of splenocytes isolated from MOG-primed wt and mmp7-/- mice and re-
stimulated for 4 days in vitro with 0, 10, 20, or 30 g/ml MOG. (b) 3H-
Thymidine incorporation of lymphocytes from the same mice and re-stim-
ulated for 4 days in vitro with 0, 10, 20 or 30 g/ml MOG. Although pro-
liferation tended to be lower in splenocytes and lymphocytes isolated from 
mmp7-/- mice, the differences were not statistically significant in compar-
ison to cells from wt mice.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-10-17-S3.pdf]
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