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Background
Dopamine is believed to be a key neurotransmitter in the development of attention-deficit/
hyperactivity disorder (ADHD). Several recent studies point to an association of the dopamine D4
receptor (DRD4) gene and this condition. More specifically, the 7 repeat variant of a variable
number of tandem repeats (VNTR) polymorphism in exon III of this gene is suggested to bear a
higher risk for ADHD. In the present study, we investigated the role of this polymorphism in the
modulation of neurophysiological correlates of response inhibition (Go/Nogo task) in a healthy,
high-functioning sample.

Results
Homozygous 7 repeat carriers showed a tendency for more accurate behavior in the Go/Nogo
task compared to homozygous 4 repeat carriers. Moreover, 7 repeat carriers presented an
increased nogo-related theta band response together with a reduced go-related beta decrease.

Conclusions
These data point to improved cognitive functions and prefrontal control in the 7 repeat carriers,
probably due to the D4 receptor's modulatory role in prefrontal areas. The results are discussed
with respect to previous behavioral data on this polymorphism and animal studies on the impact of
the D4 receptor on cognitive functions.
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Background
Considerable evidence exists for an association of the
dopamine D4 receptor (DRD4) gene located on chromo-
some 11p15.5 and attention-deficit/hyperactivity disor-
der (ADHD) [1-3]. In particular, a specific allele (7-
repeat) of a variable number of tandem repeat (VNTR)
polymorphism in the coding region of this gene has been
suggested to be a risk factor for the development of
ADHD. Although there exist a number of association
studies [4-6] and a few studies on neuropsychological cor-
relates of this polymorphism in ADHD [2,7,8], evidence
regarding the underlying neural mechanisms mediating
this association remains scarce [9,10]. However, ADHD is
known to imply changes in a range of neurophysiological
markers of prefrontal functions such as performance
monitoring and inhibitory control [11-13]. Moreover,
altered prefrontal functions in ADHD are often related to
the assumed underlying dopaminergic dysfunction in
those patients [1,3]. The question thus arises whether pre-
frontal functions are modulated also by the DRD4 VNTR
polymorphism. The present study aimed at investigating
possible behavioral differences related to the 7-repeat
allele as well as its impact on neurophysiological corre-
lates of prefrontal functions in a healthy, high-function-
ing sample.

The D4 receptor belongs to the D2-like dopamine recep-
tor class and has received special interest in the past,
because the atypical neuroleptic clozapine binds with
high affinity and specificity to this receptor [14]. The D4
receptor is particularly abundant in prefrontal regions
(PFC; including ACC), but expressed also in regions
belonging to the limbic system such as the amygdala and
hippocampus [15,16]. Regarding its functional role, an
inhibitory influence of D4 receptor activation on GABAer-
gic and glutamatergic functions in the PFC has been dem-
onstrated, possibly underlying the beneficial effects of
neuroleptics such as clozapine [17-19].

Recently, a number of different polymorphisms both in
the promotor and the coding region of the D4 receptor
gene have been studied regarding their physiological and
behavioral relevance [9,20-23]. The VNTR investigated in
the present study is an extensive polymorphic 48bp
sequence in exon III that is coding for the third intracellu-
lar loop in the D4 receptor [16,24,25]. The 7-repeat vari-
ant has been shown to be half as potent in its ability to
inhibit cyclic adenosine monophosphate (cAMP) forma-
tion compared to the 2- or 4-repeat variants [26]. Impor-
tantly, there are by now several meta-analyses providing
evidence for a small, but robust association between the 7-
repeat variant and ADHD [5,6,27], whereas studies
regarding a link of this polymorphism and the personality
trait novelty seeking remained inconclusive [28,29].

In the last years, this gene-ADHD association has led to
several studies investigating possible neuropsychological
effects of the DRD4 VNTR, mainly in ADHD children
[2,7,8], but also in healthy participants [30]. However,
variability in the included samples regarding participants'
disease severity as well as differences in the applied behav-
ioral paradigms and finally contradictory results render
conclusions about the genetic effects difficult [for a review
see [31]]. Moreover, the majority of these studies were
conducted on heterozygous participants, as the allele fre-
quency of the 7 repeat variant is quite low. Swanson and
colleagues [2], for instance, investigated attentional con-
trol in a sample of children with the ADHD-Combined
type. Contrary to their expectations, they found less accu-
rate and more variable performance in patients without
the 7 repeat variant, but not in the patients with at least
one 7 repeat allele. The authors (and others observing
similar results) hence suggested that the 7 repeat variant
might present a subgroup with the behavioral but not cog-
nitive symptoms of ADHD [2,7,32]. However, in a
healthy sample, Congdon and co-authors [30] reported
reduced inhibitory control in carriers of at least one 7
repeat allele compared to participants without one.

Whereas behavioral data thus do not allow final conclu-
sions about the functional role of this genotype, neuro-
physiological data (such as event-related potentials, ERPs
or task-induced oscillations) might be more sensitive for
subtle, genetically caused differences [20,33,34] and can
moreover speak to the underlying mechanisms of the
gene-ADHD association. Electrophysiological studies on
the Go/Nogo-paradigm have focussed in particular on the
frontal N2/P3 complex in nogo-trials [35,36], supposedly
related to the inhibition and its evaluation, respectively
[12,37], but see [38,39]. Few studies have analyzed time-
frequency changes related to motor inhibition, pointing
to both modulations in the theta and beta frequency
bands [40-42]. Whereas increases in the theta band over
frontocentral areas are seen in a range of cognitively
demanding situations [43-45], changes in beta frequency
oscillations have been related both to changes in motor
excitability and inhibitory frontal control [41,42,46].
More specifically, event-related desynchronization (ERD)
in the beta band is typically seen before onset of move-
ment with a rebound (event-related synchronization,
ERS) after the movement. ERD and ERS have been pro-
posed to be related to cortical activation and a cortical
resting state, respectively [46-48]. Importantly, ADHD is
known to be associated with altered prefrontal functions
related to behavioral inhibition and action monitoring,
which has also been shown to be reflected in diminished
ERP components as the nogo-related N2 or the error-
related negativity [11,12,49]. Differences in such markers
of prefrontal functions might thus help to clarify the neu-
ral processes that are affected by this genetic risk factor.
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The aim of the present study was thus to investigate the
polymorphism's impact on neurophysiological correlates
of inhibitory control and to clarify previous contradictory
results in behavioral studies. We performed a Go/Nogo
task with participants selected from a larger sample based
on their DRD4 alleles to investigate neurophysiological
correlates (ERPs and task-induced oscillations) of inhibi-
tory control. We used a hybrid go/nogo choice reaction
task that allowed us to parametrically manipulate inhibi-
tory functions (see methods). Deficits in inhibitory func-
tions should especially be detectable under more
demanding conditions. Such an approach has been
proven useful to detect subtle genetically caused differ-
ences [50]. Importantly, we included only participants
being homozygous for either the 4 repeat or the 7 repeat
variant in the EEG sample. As the 7 repeat allele is rare
[51], the vast majority of studies has compared hetero-
zygous participants, rendering conclusions about genetic
effects in these participants questionable. We found group
differences in both performance and electrophysiological
effects, which point to improved cognitive functions and
prefrontal control in the 7 repeat carriers, probably due to
the D4 receptor's modulatory role in prefrontal areas.

Results
Behavioral results
Participants' mean reaction time in go trials was 525 ms
and they had on average 95.0% of hits and 16.8% of false
alarms in the Nogo trials. Participants responded faster in
the easy than in the hard condition, although this effect
was more pronounced for the high go probability block
(72%), resulting in faster responses for the easy trials in
blocks with 72% compared to 50% go probability (Dis-
criminability*Probability: F1,18 = 5.87, p = 0.026). The
two DRD4 groups did not differ with respect to their reac-
tion times (main effect of DRD4 factor and interactions: p
> 0.2; Table 1). Participants were significantly less accurate

(difference between percentage of hits and percentage of
false alarms) in their behavior in the hard (69.7%) com-
pared to the easy condition (93.2%; Discriminability:
F1,18 = 125.4, p < 0.001).

We observed group differences in accuracy: The 4rep
group showed less accurate behavior in blocks with 72%
compared to 50% go trials (75.2 vs. 84.8%; Probability:
F1,9 = 22.03, p = 0.001), whereas no such block effect was
seen in the 7rep group (81.6 vs. 84.3%; Probability: F < 1).
However, the interaction yielded only marginal signifi-
cance (Probability*DRD4: F1,18 = 3.82, p = 0.066, partial
η2 = 0.18; Figure 1). Similar results were derived when
using the signal detection measure a' as dependent varia-
ble [52], but the interaction yielded significance here
(Probability*DRD4: F1,18 = 5.63, p = 0.029, partial η2 =
0.24). As can be seen in Table 1, this group difference was
caused mainly by less hits in the 4rep group in the block
with 72% compared to 50% go-trials.

Go/Nogo: ERPs
ERPs revealed an enhanced negativity (N2) in nogo com-
pared to go trials around 200 to 400 ms after stimulus
onset, followed by a higher nogo-related frontal positivity
(nogo-P3; Figure 2A) [37]. At posterior sites, we observed
a higher positivity for go compared to nogo trials (P3b),
with a maximum around 400 ms. We will report both the
effects of the task conditions (discriminability and proba-
bility) as well as group differences separately first for the
nogo-N2 and then for the nogo-P3.

Table 1: Demographic and behavioral data

4rep 7rep

Sex (F/M) 10/0 8/2
Age (mean, years) 20.0 (1.4) 22.6 (3.4)

RT (easy - 50% go) 495.6 (92.8) 529.0 (70.1)
RT (hard - 50% go) 538.7 (110.7) 568.7 (69.9)
RT (easy - 72% go) 464.3 (91.8) 506.4 (63.0)
RT (hard - 72% go) 539.0 (87.9) 558.0 (68.8)
Hits/False alarms (easy - 50% go) 98.1/2.32 98.2/3.4
Hits/False alarms (hard - 50% go) 95.0/21.2 94.3/20.5
Hits/False alarms (easy - 72% go) 98.1/8.5 98.3/5.6
Hits/False alarms (hard - 72% go) 84.5/23.8 93.8/23.4

RT refers to mean reaction time of hits in ms in the two 
discriminability conditions (easy, hard) and 50% or 72% go probability 
blocks. Hits and false alarms are given in percentage values. Numbers 
in brackets refer to the standard deviance.

Behavioral results for the Go/Nogo-taskFigure 1
Behavioral results for the Go/Nogo-task. Depicted is 
the average accuracy (% hits -% false alarms) for the two 
groups (4rep and 7rep), separately for the blocks with 50% 
and 72% go trials.
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Nogo-N2
The nogo-related N2 increase was clearly significant and
differed between the discriminability conditions (easy vs.
hard) and the electrode position (Go*Discriminabil-
ity*Electrode: F2,36 = 10.13, p = 0.001), but did not differ
between the groups (all interactions involving DRD4 and
Go: n.s., all partial η2 < 0.1; Figure 2B). Moreover, contrary
to our prediction, the N2 did not increase in 72% go
blocks (all interactions involving Probability and Go:
n.s.). As can be detected in Figure 2, the conditions dif-
fered however in the amplitude of the preceding positiv-

ity. We thus additionally computed the amplitude
difference at Fz between the N2 peak (mean amplitude in
40 ms window around the peak in nogo-trials, separately
assessed for the different conditions) and the preceding
positivity (mean amplitude 180-220 ms) and subjected
this difference value to a repeated measures ANOVA as
outlined above. We found a significant interaction of Go
* Probability * Discriminability (F1,18 = 8.27, p = 0.01),
reflecting a tendency for an increased N2 in the easy con-
dition in 72% compared to 50% go blocks (Go * Proba-
bility: F1,18 = 3.24, p = 0.089), but a tendency for a
decreased N2 in the hard condition in 72% compared to
50% go blocks (Go * Probability: F1,18 = 4.31, p = 0.053).

Further evaluation of the interaction Go*Discriminabil-
ity*Electrode revealed different topographies for the con-
ditions: Whereas in the hard condition the effect was
clearly evident at all three midline electrodes (Go: F1,18 =
22.58, p < 0.001; Go*Electrode: p > 0.1), the effect did
interact with the electrode position in the easy condition
(Go*Electrode: F2,36 = 8.79, p = 0.002). However, contrary
to the typical N2 topography with a frontocentral maxi-
mum, the Nogo-related difference was maximal at the
posterior electrode (Pz). In fact, as can be clearly asserted
from Figure 2A, the frontal N2 effect was overlapping with
the posterior P3b effect, i.e. an enhanced positivity for Go
compared to Nogo stimuli. This temporal overlap of the
two components makes a clear assessment of the nogo-N2
and putative group differences difficult. It might well be
that group differences in the nogo-N2 are overshadowed
by the larger P3b effect.

Nogo-P3
The frontal nogo-P3 effect, which seems to be present in
the 72% block, did not reach significance. Although we
observed an interaction of Go*Probability*Electrode
(F2,36 = 14.18, p < 0.001) in the time-range of the nogo-P3
(400 - 600 ms), this was due to differences in the posterior
P3b. More specifically, a long-lasting P3b effect was
observed in the 50% go block, with a maximum over pos-
terior electrodes (Go*Electrode: F2,36 = 12.5, p < 0.001;
Figure 2A). Importantly, no main effect or interaction
with the factor Go yielded significance in the 72% go
blocks (all: p > 0.1). Neither did any interaction involving
the group factor reach significance (all F < 1, all partial η2

< 0.1).

Go/Nogo: Time-frequency results
Regarding the time-frequency domain, we observed an
increase of power in the theta band (4-8 Hz) in nogo com-
pared to go trials between 300 - 500 ms, which was most
prominent at central electrodes, and a decreased beta
band response in go compared to nogo-trials between 400
- 600 ms (Figure 3A and 4B). Moreover, first visual inspec-
tion suggested an enhanced theta band response in the

Event-related potentials (ERPs) in the Go/Nogo taskFigure 2
Event-related potentials (ERPs) in the Go/Nogo task. 
A Shown are the ERPs in Go (dashed lines) and Nogo trials 
(solid lines) at frontal (Fz) and posterior (Pz) sites, separately 
for 50% (left side) and 72% go blocks (right side) and for the 
easy (upper half) and hard condition (lower half). Marked are 
the time windows that were analyzed for the N2 and P3a 
effects. B Average difference values (Nogo - Go) with the 
respective standard error bars at frontal sites (Fz) for the 
time window 200 - 400 ms (N2). Results are shown sepa-
rately for the two groups (grey: 4rep and black: 7rep), for 
50% (left side) and 72% go blocks (right side) and further sep-
arated for the two conditions.
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7rep compared to the 4rep group, together with a stronger
beta band decrease in the 4rep group (Figure 3B and 4B).
Effects of the conditions and group differences will be
reported first for the theta-band and then for the beta
band.

Theta response
To investigate the theta effect, we subjected the mean
power increase between 300 - 500 ms and 4 - 8 Hz to a

repeated measures ANOVA with the between-subject fac-
tor DRD4 and the within-subject factors Go (go vs. nogo),
Discriminability (easy vs. hard), Probability (50% vs.
72% go) and Electrode (Fz, Cz, Pz). A significant interac-
tion of Go*Probability*Electrode (F2,36 = 7.02, p = 0.003)
reflected the enhanced theta band response in nogo vs. go
trials, which was found to be increased in the 72% go
compared to the 50% go block (interaction Go*Electrode
in 50% block: F2,36 = 8.23, p = 0.001; in 72% block: F2,36
= 16.37, p < 0.001). In both, the 50% and 72% go blocks,
the theta increase was most pronounced at Cz, which can
be observed in the topographic map in Figure 3A.

Importantly, we observed an interaction of this effect with
the group factor (DRD4*Go*Probability*Electrode: F2,36
= 8.52, p = 0.001, partial η2 = 0.321; DRD4*Go: F1,18 =
3.12, p = 0.094), such that the nogo-related increase in the
theta band was significantly higher in the 7rep (Go*Prob-
ability*Electrode: F2,18 = 10.72, p = 0.001) compared to
the 4rep group (Go*Probability*Electrode: F2,18 = 4.55, p

Time frequency results of the Go/Nogo taskFigure 3
Time frequency results of the Go/Nogo task. A Differ-
ences in the power change relative to the baseline between 
Nogo and Go trials at Cz, shown for the analysed frequen-
cies (1 to 30 Hz) and separately for 50% (left side) and 72% 
go blocks (right side) and for the easy (upper half) and hard 
condition (lower half). The white square marks the analyzed 
time and frequency range for the nogo-related theta band 
increase with the respective topographic map. B Group dif-
ferences in the time frequency data. Depicted is the power 
change relative to the baseline between Nogo and Go trials 
at Cz, separately for the two groups (4rep: upper part; 7rep: 
lower part) and 50% (left) vs. 72% go blocks (right side). The 
white squares indicate the analyzed time and frequency range 
for the beta and theta band, and shown are the topographies 
for the beta [scale -20 to 20% power change; collapsed 
across 50 and 72% blocks] and theta band changes [scale -40 
to 40% power change] in the 4rep and 7rep group.

Group differences in the time frequency resultsFigure 4
Group differences in the time frequency results. A 
Results for the theta band response (4 - 8 Hz, 300 - 500 ms) 
with the average power change relative to the baseline for 
both groups in go and nogo trials at Cz, separately for 50% 
(left side) and 72% go blocks (right side). B Results for the 
beta band response (20 - 30 Hz, 400 - 600 ms). Shown is the 
average power change relative to the baseline for both 
groups in go and nogo trials, separately for the left hemi-
sphere (electrode C3, left side) and right hemisphere (elec-
trode C4, right side).
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= 0.025). The theta increase was in both groups higher in
72% compared to 50% blocks and was most pronounced
at Cz (Figures 3B and 4A). In fact, at the single electrode
level, we observed in the 4rep group no significant main
effects of Go in the 50% block (all electrodes: p > 0.05)
and only at Cz for the 72% block (p < 0.01), whereas the
7rep group showed significant effects at Cz for the 50%
block (p < 0.05) and at all midline electrodes for the 72%
block (Fz and Cz: p < 0.01, Pz: p < 0.05).

Beta response
In addition to the theta band response, we observed dif-
ferences between go- and nogo-trials in the beta band
(maximum at 20 - 30 Hz) between 400 to 600 ms (Figure
3B). More specifically, go-trials led to a more pronounced
power decrease compared to nogo-trials (main effect Go:
F1,18 = 6.44, p = 0.021), which was found to be more pro-
nounced over the left than right hemisphere (Go*Hemi-
sphere: F1,18 = 9.14, p = 0.007). Interestingly, this go-
related desynchronization was observable in the 4rep
group only (DRD4*Go: F1,18 = 10.45, p = 0.005, partial η2

= 0.37; 4rep group: Go: p < 0.001), whereas no differences
between go- and nogo-trials were seen in the 7rep group
(Go: F < 1) (Figure 3B and 4B).

Discussion
The present study aimed at investigating the role of the
DRD4 VNTR polymorphism in the modulation of pre-
frontal processes related to response inhibition. To this
end, we compared homozygous 4rep and 7rep carriers
with respect to neurophysiological markers of response
inhibition. Carriers of the 7rep allele, which is suspected
to bear a higher risk for ADHD, performed more accu-
rately in the Go/Nogo-task than carriers of the 4rep allele,
but the difference yielded marginal significance only. The
same group showed an enhanced nogo-related theta band
increase and an absent go-related beta band decrease,
whereas no genetic effects on ERPs could be detected.

Behavior
Behaviorally, 7rep carriers showed more accurate per-
formance in the task, whereas the 4rep carriers performed
less accurately (less hits) in particular in the more
demanding condition (72% go blocks). Our results are in
partial contrast to recent results of Congdon and co-work-
ers [30], who reported impaired response inhibition in a
stop-signal task in carriers of at least one 7rep allele. How-
ever, this effect was particularly observable in combina-
tion with a dopamine transporter polymorphism (DAT1),
and the authors included both heterozygous and
homozygous participants for the DRD4 polymorphism,
which makes a direct comparison of the results difficult. It
is notable also that a reduced hit rate can hardly be
explained with differences in inhibitory control but rather
with differences in sustained attention between the

groups. Differences in accuracy are also likely to result
from differences in cortical activity which fits well with the
assumed role of DRD4 in cortical, especially prefrontal
areas [14,15]. In line with neuropsychological studies in
ADHD patients with the 7rep allele [2,7,8], our results
rather support the view that this variant is associated with
unimpaired or in our case even improved cognitive con-
trol functions.

Event-related potentials
Unexpectedly, we did not find any group differences in
the inhibition-related ERPs, namely the nogo-N2 and P3.
Both components are frontocentrally distributed and are
observed in experimental settings calling for an inhibition
of motor responses as in Go/Nogo tasks [36,37]. The N2
is suggested to reflect inhibitory mechanisms emanating
from areas in the prefrontal cortex [11,53]. This view has
been challenged, though, by others who see the N2 in go/
nogo tasks as an index of conflict monitoring [38]. Inter-
estingly, both accounts (inhibition and conflict monitor-
ing) of the N2 predict and have previously shown an
enhanced N2 in blocks of high go-probability, which we
did not observe in the present data [38,54]. As noted in
the results section, there was a tendency for an interaction
between discriminability and go-probability on the N2,
which has not been addressed in previous work. The prob-
ability effect on reaction times was also stronger for the
easy compared to the hard condition. As this is to our
knowledge the first study to look at this interaction of go-
probability and stimulus discriminability, future studies
will need to replicate this finding before drawing conclu-
sions with respect to the inhibition and conflict-monitor-
ing accounts of the nogo-N2.

The nogo-P3 on the other hand has rather been related to
a later stage of the inhibitory process, indexing the moni-
toring of its successful implementation instigated by the
anterior cingulate cortex or pre-SMA [12]. Given previous
reports of altered nogo-related N2/P3 components in
ADHD [11,12] and the outlined expression profile of the
D4 receptor [15], one might expect a modulation of these
prefrontal components by the DRD4 polymorphism.
However, the N2 was in our case largely overlapping with
the posterior P3b effect, an enhanced positivity for Go-
compared to Nogo-trials. As has been pointed out in the
results section, this overlap makes a clear assessment of
group differences in the nogo-N2/P3 difficult.

Time-frequency data
We additionally performed time-frequency analyses of the
data, which have been demonstrated to be a useful tool to
decompose underlying functional components of ERPs
[55,56]. Moreover, they enable us to study oscillations in
higher frequency bands (beta band), which are of lower
amplitude and possibly less phase-locked to the trigger
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event and therefore less detectable in ERPs. We observed
an increase in the theta band in nogo- compared to go-tri-
als, which was additionally enhanced in 72% go blocks.
These results are in line with previous findings of an inhi-
bition-related increase in the theta band [40], which is
probably stemming from activity in the PFC and/or ACC
[43-45]. Moreover, modulations of oscillations in the
theta band have been consistently found in tasks calling
for increased cognitive effort and action control as in
interference resolution, error-related processing or work-
ing memory [44,45,57,58]. Interestingly, 7rep partici-
pants showed a significantly higher nogo-related theta
band response compared to the 4rep group. Both groups
showed the maximum over central electrodes and a
stronger theta band response in 72% compared to 50% go
blocks. This points to an elevated level of inhibition-
related prefrontal activity in the 7rep participants.

Moreover, we detected group differences in the beta band
response, such that only 4rep carriers presented the typical
go-related beta decrease, whereas no go-related beta
decrease was observable in the 7rep group. Oscillations in
the beta band have been linked to motor responses with a
typical decrease during the motor response and a subse-
quent increase (event-related desynchronization, ERD,
and synchronization, ERS, respectively), stemming from
the sensorimotor and primary motor areas [46]. A
reduced ERD is typically seen in relation to inhibition of
the motor response [42,47]. As the stimulus onset asyn-
chrony in the present study was fixed to only 1000 ms, our
design did not allow to analyze ERD/ERS directly, because
a longer intertrial interval is needed to have a reliable
baseline [46]. A reduced beta decrease has been found
also in relation to post-error-slowing which was taken as
evidence for inhibitory activity underlying post-error
adaptation [41]. Notably however, the post-error related
beta effect had a more frontal topography than the current
beta response in the 4rep group. Importantly, genetic
effects in the present study were seen in the go-related beta
decrease but not in the nogo-related beta response. The
lack of a go-related decrease in the beta band in the 7rep
group suggests that the enhanced prefrontal activity led to
a generally stronger inhibitory bias in these participants.

At first glance, enhanced prefrontal functions and better
response inhibition seem to be at odds with the suggested
increased risk for ADHD development. ADHD children
have been shown to perform worse in cognitive control
and response inhibition tasks, reflected especially in
reduced accuracy and increased reaction time variability
rather then a general reaction time decrement [49,59].
They moreover present a reduced level of inhibition-
related prefrontal activity in fMRI and ERP studies [11-
13,49,59]. However, as outlined in the introduction,
some behavioral studies in ADHD children reported
abnormal behavior in children with the 7rep variant, but

unimpaired cognitive functions, despite the allele's robust
link with the disease [2,7]. These data converge on a dif-
ferential role of this polymorphism in terms of cognitive
functions and of ADHD related behavior. Interestingly,
studies in rodents pointed to positive effects of prefrontal
D4 receptor blockade on different cognitive functions,
possibly because of the receptor's inhibitory effect on
glutamatergic activity [60,61]. Floresco and co-authors
[61], for instance, reported improved behavior in a maze-
based set-shifting task after infusion of a D4 receptor
antagonist in the PFC and impaired performance after
infusions of a D4 receptor agonist. Given the observed
reduced dopaminergic response in the 7rep variant [26],
these results hint at a possible mechanism to explain the
polymorphism's effect on prefrontal functions. Further
studies will be needed to delineate the polymorphism's
specific effects on cognitive functions.

Obviously the present results have to be interpreted with
caution because of rather small sample size due to the
scarcity of 7rep homozygotes. Replications of these results
in independent samples are clearly needed. It should be
noted also that the effects both on the behavioral and
electrophysiological level were surprisingly small given
the quite robust association findings of this polymor-
phism with ADHD. Importantly, in contrast to previous
studies on the DRD4 VNTR, we included homozygous
participants only, which allows clear interpretations of the
results, whereas the physiological effects in heterozygotes
are difficult to judge for this gene.

Conclusions
The present study is the first to investigate the neurophys-
iological basis of the DRD4 VNTR association with ADHD
by examining its effects on neural correlates of inhibitory
functions in a healthy sample. Genetic effects on the levels
of behavior and neurophysiology provide further evi-
dence for the polymorphism's role in the modulation of
prefrontal functions and dovetail previous findings on the
impact of dopaminergic genes on cognitive control func-
tions [20,50]. The results underline behavioral findings of
improved cognitive functions in 7rep carriers, which is
contrary to the allele's association with ADHD. We sug-
gest on the basis of the present findings that the 7rep var-
iant might entail better cognitive control due to the D4
receptor's modulatory function in prefrontal areas. Neu-
rophysiological studies (EEG or fMRI) might be thus a
more promising research line to investigate the role of cer-
tain genes in the development of ADHD, going beyond
mere association or behavioral studies [62].

Methods
Participants
The genotyping was performed in a large sample of 656
students from the University of Barcelona (491 women;
age range from 18 to 56, mean = 21.7, S.D. = 3.5), who
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underwent a comprehensive neuropsychological test bat-
tery and filled out several personality questionnaires. We
initially performed the genotyping for six different poly-
morphisms in the dopaminergic system, namely COMT
Val108/158Met, DRD4 -521, DRD4 120bp, DRD4 exon
III, MAO-A 30bp and DAT1 VNTR. In the present study,
we focused on the DRD4 exon III polymorphism only.
The allele frequencies for this polymorphism were as fol-
lows: 8.7% (2 repeat), 2.7% (3 repeat), 70.9 (4 repeat),
1.5% (5 repeat), 0.3% (6 repeat) and 15.9% (7 repeat).
The observed genotype frequencies were in Hardy-Wein-
berg equilibrium (chi2 (27) = .2369, n.s.). 29 participants
were homozygous for the 7 repeat allele. Note that the
selection of this polymorphism was based on previous lit-
erature only and not on behavioral results of the neu-
ropsychological test battery. The EEG paradigm (see
below) was performed in the sub-sample only and we did
not test for any effects of other polymorphisms in this
sample. Previous EEG studies with other sub-samples of
this large group and related to other polymorphisms have
been published elsewhere [20,63].

We selected 27 (22 women; age range from 20 to 30 years,
mean = 23.0) participants based on their DRD4 exon III
alleles for the second session. Of these participants, 11 (9
women) were homozygous for the 7 repeat version (in the
following referred to as 7rep group) and 16 (13 women)
were carriers of two 4 repeat alleles (in the following
referred to as 4rep group). One of the 7rep and four of the
4rep participants had to be excluded because of extensive
artefacts in the EEG data. One of the participants (4rep
group) could not discriminate between the go and nogo
stimuli in the hard condition (see below for explanation
of the paradigm) leading to a high amount of false alarms
(70% in the 50% go block and 44% in the 72% go block).
One participant (4rep group) reported to have had epilep-
tic seizures in the past. We included thus 20 subjects in
our final analyses, 10 in each group. They were all right-
handed participants of European ancestry (except one
from Ecuador) and were free of neurological and psychi-
atric disorders (self-report). They were paid for their par-
ticipation and gave written informed consent. All
procedures were approved by the local ethical Institu-
tional Review Board (IRB00003099).

Genotyping
DNA contributed to the study was prepared by standard
techniques from two independent EDTA blood samples
of each participant. DNA was amplified with fluorescent
primers: DRD4_ExIII_for: 5'-Fam-GCGACTACGTGGTC-
TACTCG-3', DRD4_ExIII_rev: 5'-AGGACCCTCAT-
GGCCTTG-3'. 2mM MgCl2 and 10% Q-Solution were
added to the reaction mix. Due to reduced amplification
of the 7 repeat allele in comparison to shorter repeat alle-
les, the elongation time was increased. The following

cycling conditions were used: 95°C 15', (98°C 15'', 62°C
30'', 72°C 1') × 34 cycles, 72°C 10'. To determine frag-
ment length PCR products were analyzed on an ABI 3100
automated sequencer with a fluorescence detection sys-
tem.

Genotypes of participants selected for ERP were control-
led in an independent second DNA sample by direct
sequencing using the ABI PRISM BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems, Foster City,
USA). Sequencing products were resolved on an ABI 3100
automated sequencer (Applied Biosystems, Foster) and
analyzed using the Staden Package [64].

Go/Nogo-Paradigm
We adapted a hybrid choice-reaction go/nogo task intro-
duced by Osman and colleagues [65]. In this task, two let-
ter-digit pairs serve as stimuli, with one pair being easily
discriminable (V and 5) and another pair being hard to
discriminate ([letter] l and [number] 1). One stimulus at
a time was presented on the left or right side of a fixation
cross, asking for left or right hand responses, respectively.
The two response hands and the two conditions (easy vs.
hard) were equally frequent and randomly presented
within each block of the experiment. Half of the partici-
pants were instructed to respond to letters in the first part
of the experiment and to digits in the second part of the
experiment, and vice versa for the other half of the partic-
ipants. We additionally manipulated the probability of go
trials, including blocks with either 50% go trials (1st half)
or 72% go trials (2nd half). Again, the order of blocks with
50% or 72% go probabilities was counterbalanced across
participants. This task thus enabled us to parametrically
manipulate inhibitory functions: The hard condition and
blocks with a higher go probability were expected to put
higher demands on inhibitory control and thereby
increase nogo-related neurophysiological responses.

The stimuli were presented for 50 ms and the stimulus
onset asynchrony was fixed to 1000 ms. Total number of
trials was 912 in the 50% go condition and 1000 in the
72% go condition. The experiment began with practice tri-
als to familiarize participants with the task. They were
instructed to respond as fast and accurate as possible. After
every 25 trials, a short break of 7 seconds was included to
allow participants to blink and about every 2 minutes a
longer break was included. The total duration of the
experiment was about one hour.

ERPs
The electroencephalogramm (EEG) was recorded from 29
tin electrodes mounted in an elastic cap (electrode posi-
tions: Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6,
FC1/2, FC5/6, CP1/2, CP5/6, PO1/2, Fz, Cz, Pz) with ref-
erence electrodes placed on the right and left mastoids.
Page 8 of 11
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During recording, all scalp electrodes were referenced
against the right mastoid and offline re-referenced against
the algebraic mean of the activity at the two mastoid elec-
trodes. Electrode impedances were kept below 5 kΩ. Hor-
izontal eye movements and blinks were monitored by an
electrode placed on the outer canthus of the right eye and
below the right eye. EEG and EOG were recorded contin-
uously and digitized with a sampling rate of 250 Hz
(bandpass from 0.01 to 70 Hz). After rejection of eye and
muscle artefacts using rejection criteria set individually
after determining the typical amplitude of the respective
artefacts in the given individual, stimulus-locked averages
were obtained for the different conditions (-100 to 924
ms) with the 100 ms preceding the stimulus considered as
baseline.

For statistical analyses, mean amplitudes were subjected
to a repeated measures ANOVA with the between-subject
factor DRD4 (4rep vs. 7rep) and the within-subject factors
Go (Go vs. Nogo), Discriminability (Easy vs. Hard), Prob-
ability (50% vs. 72% go trials) and electrode position (as
stated below). As we were interested in the nogo-related
N2 and P3, we considered relevant only main effects or
interactions involving the factor Go. We refer to the fron-
tal P3, which is higher in nogo compared to go trials as
"nogo-P3" [37] to dissociate it from the posterior P3b,
which is higher for go compared to nogo-trials. The ana-
lyzed time windows were chosen in light on previous
results. For all statistical effects involving more than one
degree of freedom in the numerator, the Huynh-Feldt cor-
rection was applied to correct for possible violations of
the sphericity assumption [66] and the corrected proba-
bilities are reported.

Time-frequency analyses
To study the inhibition-related oscillatory activity, single
trial data were convolved with a complex Morlet wavelet:

with the relation f0/ f (where f = 1/(2 t)) set to 6.7 [67].
For single trials in the different conditions, we computed
and averaged for each subject changes in time varying
energy (square of the convolution between wavelet and
signal) in the studied frequencies (from 1 to 30 Hz; linear
increase) with respect to baseline. Based on previous stud-
ies, we were interested in changes in the theta band (4 - 8
Hz) reflecting prefrontal control functions [40,44,58] and
the beta band, which is rather related to the motor output
itself [46]. Selection of the analyzed beta frequencies (20
- 30 Hz) was based on visual inspection of the main go-
related effect. The selection of the analyzed time windows
was based on the visual inspection of the maxima in the

theta and beta band response. Mean increase/decrease in
power was obtained for the three midline electrode loca-
tions (Fz, Cz, Pz) and entered into a repeated measures
ANOVA with the within-subject factors Go (Go vs. Nogo),
Discriminability (Easy vs. Hard), Probability (50% vs.
72% go trials) and Electrode (Fz, Cz, Pz) and the between-
subject factor DRD4 (4rep vs. 7rep). As first visual inspec-
tion suggested a lateralized effect in the beta band, we
analyzed the beta response at the electrodes F3/4, C3/4
and P3/4 yielding a repeated measures ANOVA with the
factors DRD4, Go, Probability, Discriminability, Anterior-
Posterior (three levels: frontal, central, posterior) and
Hemisphere (right vs. left). As for the ERPs, we were inter-
ested only in main effects or interactions of the factor Go.
For all interactions with the factor Group, partial eta
square (partial η2) are given as measure of the effect size.
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