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Abstract
Background The mechanical tactile stimulation, such as plastic pins and airflow-driven membrane, induces cortical 
activity. The cortical activity depends on the mechanical tactile stimulation pattern. Therefore, the stimulation pattern 
of mechanical tactile stimuli intervention may influence its effect on the somatosensory function. However, the effect 
of the mechanical tactile stimulation input pattern on the somatosensory function has not yet been investigated 
at the behavioral level. The present study aimed to clarify the effects of mechanical tactile stimuli intervention with 
different stimulation patterns on the ability to discriminate moving directions.

Results Twenty healthy adults participated in the experiment. Three conditions were used for mechanical tactile 
stimuli intervention: (1) the whole stimulus surface was stimulated, (2) the stimulus moved within the stimulus 
surface, and (3) a no-stimulus condition. The effects of mechanical tactile stimuli intervention on tactile discrimination 
were evaluated using a simple reaction task and a choice reaction task to discriminate the movement direction. 
Reaction time, correct rate, and rate correct score were calculated to measure task performance. We examined the 
effects of mechanical tactile stimuli intervention on the ability to discriminate the moving direction for a certain 
period under three intervention conditions. The results showed that the mean reaction time during the simple 
reaction task did not differ significantly before and after the intervention under all intervention conditions. Similarly, 
we compared the data obtained before and after the intervention during the choice reaction task. Our results 
revealed that the mean reaction time and correct rate did not differ significantly under vertical and horizontal 
conditions. However, the rate correct score showed a significant improvement after the horizontal moving tactile 
stimulation intervention under both vertical and horizontal conditions.

Conclusions Our results showed that the effect of mechanical tactile stimuli intervention on mechanical tactile 
stimulation moving direction discrimination function depended on the input pattern of mechanical tactile stimuli 
intervention. Our results suggest the potential therapeutic benefits of sustained tactile stimulation intervention. This 
study revealed that it is possible to change behavioral levels via mechanical tactile stimuli intervention as well as the 
potential of mechanical tactile stimuli intervention in the field of rehabilitation.
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Background
Somatosensory stimulus input provides various infor-
mation. Previous studies have focused on the ability to 
discriminate various stimulus parameters, including 
frequency [1–3], time [4, 5], intensity [6], space [5, 7], 
pattern [8, 9], and motion [10–13]. When discriminat-
ing stimuli motions in two directions, a previous study 
reported that the stimuli presented to the fingertip were 
discriminated beyond the chance level between the 
stimulus that moved parallel to the long axis of the fin-
ger (vertical) and that across the finger (horizontal) [10]. 
Previous studies using fMRI showed that there is signifi-
cant activity in the primary somatosensory cortex (S1), 
secondary somatosensory cortex (S2), and inferior pari-
etal cortex (IPC) during the task of discriminating the 
direction of movement of stimuli motion [11]. Thus, the 
activity in these cortical regions is possibly important in 
discriminating the moving direction of somatosensory 
stimulation.

Mechanical tactile stimulation (MS) is one of the 
somatosensory stimuli, and cortical excitability and 
somatosensory function are changed after high-fre-
quency MS interventions [14–19]. Repetitive stimuli have 
been reported to induce long-term potentiation (LTP) 
when the input is at a high frequency of ≥ 5 Hz [20–22]. 
In the MS intervention, 20  min of high-frequency MS 
intervention (20  Hz) was suggested to induce LTP-like 
changes and to improve two-point discrimination per-
ception [17, 18]. Furthermore, the changes in cortical 
excitability with the MS intervention depend on the stim-
ulus pattern [19, 23, 24]. In a 20-minute MS intervention 
(20 Hz; 1 s on, 5 s off) using plastic pins, the changes in 
somatosensory-evoked magnetic fields depended on the 
pattern of the MS intervention with moving the row of 
pins within the stimulation plane or repeated stimulation 
of the finger pad [19]. Therefore, the stimulus pattern of 
the MS intervention may influence the effect of the inter-
vention on the somatosensory function; however, the 
effect of the input pattern of the MS intervention on the 
somatosensory function has not been investigated at the 
behavioral level.

The differences in MS patterns were reported to evoke 
activity in different cortical regions [25, 26]. For example, 
MS moving in one direction on the finger pad showed 
significant activity in S1 and S2 as compared to MS with-
out movement, and MS moving regularly on the finger 
pad showed a significant activity in the IPC as compared 
to moving randomly [25]. Consequently, MS moving 
regularly in one direction induced activity in the corti-
cal regions involved in discriminating the moving direc-
tion of MS. Thus, the high-frequency MS input moving 
regularly in one direction may activate cortical regions 
involved in discriminating the direction of MS movement 
and improve somatosensory discrimination function. 

However, the effects of MS interventions on somatosen-
sory functions that are dependent on MS input patterns 
were not examined.

The present study aimed to investigate the effects of 
the MS interventions with different stimulus patterns on 
somatosensory discrimination functions at the behav-
ioral level using the MS moving direction discrimination 
task. MS moving regularly in one direction induces activ-
ity in cortical regions involved in discriminating the mov-
ing direction of MS. Accordingly, we hypothesized that 
the intervention with high-frequency MS input moving 
in one direction improves MS’ ability to discriminate the 
motion direction. The present study expands the knowl-
edge regarding the effect of MS interventions depending 
on the input pattern.

Results
Choice reaction task
Three MS interventions were employed in the current 
study. The repetitive global tactile stimulation (RGS) 
intervention stimulated the index finger with all 16 pins 
at the same time (Fig. 1A), the horizontal moving tactile 
stimulation (HMS) intervention stimulated the index fin-
ger with a row of four vertically aligned pins moved from 
left to right (Fig.  1B), and the Control intervention, the 
right index finger was placed on the device without any 
stimulation (Fig. 1C).

We used the Wilcoxon signed-rank test to compare 
the RCS before and after the intervention. In the verti-
cal condition of the HMS intervention, the RCS shifted 
1.8 ± 0.5 to 2.0 ± 0.4. The Wilcoxon signed-rank test 
revealed that RCS was significantly higher after the inter-
vention than before the intervention (p = 0.002, r = 0.684) 
(Fig.  2Ab). However, the Wilcoxon signed-rank test 
revealed that RGS and Control interventions showed no 
significant difference before and after the intervention 
(RGS intervention: p = 0.455, r = 0.167; Control interven-
tion: p = 0.296, r = 0.234) (Fig.  2Aa, c). The RCS shift in 
the RGS intervention was 1.8 ± 0.4 to 1.8 ± 0.4, and that 
in the Control intervention was 1.9 ± 0.5 to 1.9 ± 0.6. In 
the horizontal condition of the HMS intervention, the 
RCS shifted from 1.9 ± 0.4 to 2.0 ± 0.3. The Wilcoxon 
signed-rank test revealed that the RCS was significantly 
higher after the intervention than before the intervention 
(p = 0.014, r = 0.551) (Fig. 2Bb). In contrast, the Wilcoxon 
signed-rank test revealed that RGS and Control interven-
tions showed no significant differences before and after 
the intervention (RGS intervention: p = 0.167, r = 0.309; 
Control intervention: p = 0.263, r = 0.250) (Fig.  2Ba, c). 
The RCS shift in the RGS intervention was 1.9 ± 0.4 to 
2.0 ± 0.3, and that in the Control intervention was 2.0 ± 0.5 
to 2.0 ± 0.5.

We used a generalized linear mixed model (GLMM) to 
analyze the mean RTs and correct rate. The mean reaction 
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Fig. 2 Rate correct score of pre and post mechanical tactile stimulation intervention. The rate correct score (RCS) for the choice reaction tasks. Com-
parison of the RCS before the intervention with that after the intervention in the (A) vertical and (B) horizontal conditions. (a) RGS intervention. (b) HMS 
intervention. (c) Control intervention. n.s: not significant

 

Fig. 1 Stimulus paradigm each mechanical tactile stimulation intervention conditions. The three intervention conditions were as follows: (A) repetitive 
global tactile stimulation (RGS) intervention, in which all 16 pins appeared and disappeared at the same time; (B) horizontal moving tactile stimulation 
(HMS) intervention, in which a row of four vertically aligned pins moved and from left to right before it disappeared; and (C) Control intervention, in which 
the right index finger is placed on the device without stimulation
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times (RTs) and correct rate are shown in Table  1. The 
mean RTs in the vertical condition showed no significant 
main effect of the intervention condition (RGS, HMS, 
and Control intervention) (F (2, 95) = 0.063, p = 0.939) and 
interaction effect (F (2, 95) = 0.740, p = 0.480). Contrarily, 
there was a significant main effect of time (pre, post) (F 
(1, 95) = 11.510, p = 0.001). In the horizontal condition, 
no significant main effect of the intervention condition 
(F (2, 95) = 0.357, p = 0.701) and interaction effect (F (2, 
95) = 0.164, p = 0.849) were observed. Contrarily, a sig-
nificant main effect of time was seen (F (1, 95) = 6.200, 
p = 0.015).

The correct rate in the vertical condition showed no 
significant main effect of intervention condition (F (2, 
95) = 1.533, p = 0.221), time (F (1, 95) = 0.251, p = 0.617), 
and interaction effect (F (2, 95) = 1.708, p = 0.187). Fur-
ther, in the horizontal condition, no significant main 
effect of the intervention condition (F (2, 95) = 1.529, 
p = 0.222), time (F (1, 95) = 0.090, p = 0.765), and interac-
tion effect (F (2, 95) = 1.038, p = 0.358) was noted.

Simple reaction task
The mean RTs in the simple reaction task (SRT) before 
and after the intervention are shown in Table  1. The 
mean RTs was compared using GLMM. There was no 
significant main effect of the intervention condition 
(RGS, HMS, and Control intervention) (F (2, 95) = 0.197, 
p = 0.821) and time (pre, post) (F (1, 95) = 1.512, p = 0.222) 
and interaction effect (F (2, 95) = 0.645, p = 0.527).

Discussion
In the present study, we investigated the effects of the 
MS intervention for a certain time with different stimula-
tion patterns on the ability of discrimination of the mov-
ing direction. The results showed that the mean RTs in 
the SRT did not change significantly before and after the 
intervention in all intervention conditions. Similarly, we 
compared the data obtained before the intervention with 
those obtained after the intervention in the CRT. Our 
results showed that the mean RTs and correct rate were 
not significantly changed in the vertical and horizontal 
conditions. However, the RCS had a significant improve-
ment after the intervention only in the HMS intervention 
in both vertical and horizontal conditions. Therefore, the 
moving tactile stimulation intervention for a certain time 
improves the ability to discriminate moving directions.

There were no significant changes in the mean RTs of 
the SRT before and after the intervention in all inter-
vention conditions. In a previous study, compared with 
before practice, the RT was significantly shorter after 
practicing SRT 60 times for 3 days, with 6 sets per day 
[27]. In the present study, the SRT was performed only 
at the time of evaluation, and each intervention was con-
ducted at least every 5 days; thus, the RT was not reduced 
unlike in previous studies.

In CRT, both the mean RTs and correct rate did not 
change significantly after the intervention, as compared 
with that before the intervention. This could be due to a 
“speed-accuracy tradeoff.” A “speed-accuracy tradeoff” is 
defined when the “speed” of the reaction is emphasized, 

Table 1 Changes in the mean RT and correct rate before and after the intervention
Choice reaction task (vertical condition)
RGS HMS Control
pre post pre post pre post

Mean RT 504.3 ± 67.7 487.7 ± 73.9 521.1 ± 104.6 478.9 ± 74.5 520.5 ± 113.0 478.3 ± 89.2
(ms)
Correct rate 87.2 ± 15.0 86.6 ± 13.5 89.6 ± 14.6 93.2 ± 12.6 91.1 ± 13.0 84.8 ± 21.2
(%)

Choice reaction task (horizontal condition)
RGS HMS Control
pre post pre post pre post

Mean RT 488.1 ± 56.1 471.6 ± 54.3 504.6 ± 86.5 475.0 ± 66.9 497.4 ± 100.1 471.8 ± 75.5
(ms)
Correct rate 91.3 ± 10.7 92.9 ± 9.7 94.7 ± 4.3 95.1 ± 4.6 94.0 ± 7.8 90.7 ± 14.1
(%)

Simple reaction task
RGS HMS Control
pre post pre post pre post

Mean RT 203.4 ± 39.2 202.3 ± 27.5 202.5 ± 28.2 208.4 ± 29.6 197.6 ± 37.7 207.7 ± 51.5
(ms)
Correct rate − − − − − −
(%)
Mean ± standard deviation
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wherein the reaction speed increases, but the error rate 
is high. Contrarily, when “accuracy” is emphasized, the 
error rate is lowered, but the reaction speed decreases. 
This “speed-accuracy tradeoff” may have resulted in a 
different balance between “speed” and “accuracy” among 
individuals. Therefore, no significant change in the mean 
RTs and correct rate could have been observed.

The Wilcoxon signed-rank test results showed that the 
RCS did not change significantly after the intervention as 
compared with that obtained before the intervention in 
the RGS and Control interventions. Contrarily, only the 
HMS intervention significantly increased the RCS after 
the intervention as compared with that before the inter-
vention. This result may suggest that the HMS interven-
tion might improve direction discrimination of moving 
MS. The reason why RCS was only improved in the HMS 
intervention is possibly due to the fact that the different 
stimulation patterns evoke cortical activities in different 
regions. Previous studies on the effects of MS have shown 
that cortical activity changed in an input pattern-depen-
dent manner [25, 26]. In a previous study that used func-
tional magnetic resonance imaging, cortical activity was 
compared immediately after the input of moving MS and 
stationary MS. The results showed that S1 and S2 were 
significantly more active in the moving MS as compared 
to those in the stationary MS. Additionally, the cortical 
activity was compared immediately after the input of a 
regularly moving MS and a randomly moving MS. The 
results showed that S1, S2, IPC, and hMT+/V5 were sig-
nificantly more active in the regularly moving MS than 
in the randomly moving MS [25]. The HMS interven-
tion used in this study involved repeated presentations of 
regularly moving stimulation, and thus, it is expected to 
elicit an increased activity in the abovementioned corti-
cal regions.

Somatosensory information from the periphery is 
transmitted from the sensory receptors in the skin to the 
S1 of the contralateral hemisphere via the spinal cord and 
thalamus. In previous studies, magnetoencephalography 
showed S1 activation after applying somatosensory stim-
ulation to the skin [28–30]. Somatosensory information 
is thought to be processed in stages, first in S1, followed 
by downstream stages in S2 and posterior parietal cortex, 
to which S1 transmits information directly [31, 32]. In 
addition to these core somatosensory cortical regions, a 
variety of other cortical regions are active during the dis-
crimination task under MS [8, 9, 33]. Regarding the tac-
tile direction discrimination used in our previous study, 
the right index and middle fingers were placed on sepa-
rate rails, and the task was to discriminate between con-
gruent or incongruent directions, in which pins moved 
on the rails; the results revealed that S1, S2, and IPC were 
active during this task [11]. In another study, a moving 
tactile stimulation was provided to both index fingers 

simultaneously to the right or left. The participants were 
asked to discriminate the right or left movement and 
reacted by pressing a button; S1, S2, IPC, and hMT+/V5 
were active during this task [12]. In the present study, in 
the CRT, the participants were presented with a tactile 
stimulation moving vertically or horizontally on the right 
index finger, and they reacted to the moving direction by 
pressing a button with their left hand. The activity of S1, 
S2, IPC, and hMT+/V5 involved with the CRT may be 
similar to that previously reported [11, 12]. Therefore, the 
HMS intervention was thought to enhance the activity 
of cortical regions that discriminate MS moving in one 
direction, thereby improving the RCS in both horizontal 
and vertical conditions.

One limitation of the present study is that the corti-
cal activity before and after the intervention was not 
recorded; thus, it is uncertain whether the MS inter-
vention changes the activity of higher cortical regions 
involved in sensory information processing. Future stud-
ies should record the cortical activity before, during, and 
after the intervention to clarify its effects on cortical 
excitability.

Conclusions
Our data revealed that the MS intervention with a uni-
directional regularly moving tactile stimulus improved 
direction discrimination sensitivity of somatosensory 
function.

Methods
Participants
Twenty right-handed healthy volunteers (mean ± stan-
dard deviation, 20.9 ± 0.3 years; 10 men and 10 women) 
participated in this experiment. No participants were 
taking medications that were known to affect the central 
nervous system prior to the experiment. The experiment 
was conducted after obtaining the patients’ informed 
consent. The present study was approved by the Ethics 
Committee of Niigata University of Health and Welfare 
(18157–190703) and was conducted in accordance with 
the guidelines stipulated in the Declaration of Helsinki.

Experimental design
The participants were identified as right-handed using 
the Edinburgh Handedness Inventory [34]. The experi-
ment was started after explaining the task verbally. The 
experimental protocol is shown in Fig. 3. The participants 
performed a SRT and CRT before the intervention. Sub-
sequently, one of the three intervention conditions was 
presented for 20  min. They performed SRT and CRT 
again after the intervention.
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Simple reaction and choice reaction tasks
At the beginning of the task, the participants sat in a 
chair, relaxed, and wore earplugs. Tactile discrimination 
is reportedly improved gazing at the stimulation site [14, 
15]. Therefore, the participants looked at the fixation 
point’s displayed center of the monitor placed in front 
during the task. The distance between the eyebrows and 
fixation point was 40 cm. MS was delivered by a piezo-
electric actuator (TI-1101; KGS, Saitama, Japan) moving 
16 plastic pins. These plastic pins are 1.3  mm in diam-
eter, with a projection height of 0.8  mm and a pushing 
force of 0.031–0.12 N/pin. The tactile stimulation’s target 
area was the right index finger pad (Fig.  4). There were 
two stimulation pattern conditions (Fig.  5). In one con-
dition, four pins in a horizontal row were moved in the 
vertical (proximal to distal) direction within the stimu-
lation area (vertical condition). In the other condition, 
four pins in a vertical row were moved in the horizon-
tal (left to right) direction within the stimulation area 

(horizontal condition). The “up” phase of the periodic 
stimulus, when the stimulation pins were protruding, was 
40 ms, whereas the “down” phase, when all 16 pins were 
withdrawn, was 10 ms. The trial time measured from the 
moment the first row of pins appeared until the last row 
of pins was withdrawn was 200 ms. Therefore, the “down” 
phase was set to 10 ms to make the participants perceive 
each row of stimulation pins as a continuous stimulation. 
The intertrial presentation interval was 4000–5000 ms. 
In the SRT and CRT, vertical and horizontal trials order 
were randomly presented.

In the SRT, a button should be pressed as quickly as 
possible with the left middle finger in response to a stim-
ulation presented to the right index finger pad. The par-
ticipants were instructed to press the button as quickly 
as possible in response not to the direction of the stimu-
lation movement but to its presentation. The SRT com-
prised 25 times of vertical condition stimulation and 25 
times of horizontal condition stimulation, totaling to 50 

Fig. 4 Presentation of mechanical tactile stimulation. This study used a piezoelectric tactile stimulator. Mechanical tactile stimulation was provided to 
the right index finger pad

 

Fig. 3 Experimental protocol. The study’s experimental protocol. The simple reaction task (SRT) and choice reaction task (CRT) were assessed pre- and 
post-intervention in the order shown in the figure. One of the three intervention conditions was presented for 20 min. The interval between each condi-
tion was at least 5 days. RGS: repetitive global tactile stimulation; HMS: horizontal moving tactile stimulation
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times of stimulation. The time taken from stimulation 
presentation to button response was recorded as RT.

The CRT is the discrimination vertical from the hori-
zontal conditions of the MS moving direction. The par-
ticipants pressed the button with their left middle and 
left index fingers for MS with a vertical and horizontal 
condition stimulations, respectively. The participants 
were instructed to discriminate and react as quickly and 
accurately as possible. The CRT comprised 50 times of 
vertical condition stimulation and 50 times of horizontal 
condition stimulation, totaling to 100 times of stimula-
tion. The RT and correct rate were recorded.

MS intervention
The intervention conditions were as follows: RGS, all 16 
pins in the stimulation plane simultaneously and repeat-
edly up and down (Fig. 1A); HMS, four plastic pins in a 
vertical row regularly and repeatedly appear and disap-
pear from left to right (Fig. 1B); and Control, no stimu-
lation (Fig.  1C). The MS intervention was applied for 
20  min. The on/off cycle of the MS intervention com-
prised 1  s of stimulation on and 5  s of stimulation off. 
During the period of the stimulation, MS was presented 

at a frequency of 20 Hz. comprising 10-ms pins up and 
40-ms pins down. This study used a crossover design of 
three repetitions of the experiment; thus, participants 
performed one intervention condition per experiment. 
The order of each intervention condition was random-
ized across participants. The interval between each con-
dition was at least 5 days.

Data and statistical analyses
According to previous studies, all trials with RT < 50 ms 
were excluded to eliminate reactions due to prediction in 
the SRT analysis [27], and the mean RTs was calculated 
and compared before and after each intervention. For the 
CRT analysis, only the trials with the RT values between 
50 and 1500 ms were included, whereas the trials with 
RT < 50 or > 1500 ms were excluded from the analysis. 
The mean RTs, correct rate, RCS [17] were calculated 
for each intervention condition and the data obtained 
before and after the intervention were compared for each 
intervention condition. The RCS is the number of correct 
responses divided by the sum of RT of all trials, includ-
ing wrong responses. The RCS is a sensitive measure of 
the speed-accuracy tradeoff [18] and has been adopted in 

Fig. 5 Paradigm of simple reaction task and choice reaction task. The time for a row of stimulation pins to appear was 40 ms, the time for all pins to 
disappear was 10 ms, and the time required for the presentation of one tactile stimulation trial was 200 ms. The stimulation patterns in the conditions 
wherein the four pins in a horizontal row moved vertically from proximal to distal on the right index finger and wherein four pins in a vertical row moved 
horizontally from left to right across the right index finger
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studies recording RT and correct rate [19, 20]. Statistical 
analysis was performed using SPSS statistics 24 software 
(IBM SPSS, Armonk, NY, USA). The RT of the SRT and 
RT, correct rate, and RCS of the CRT were compared 
before and after the intervention. The Shapiro–Wilk test 
was used to test normality. Therefore, we used GLMM 
to analyze the main effect of the intervention condition 
(RGS, HMS, and Control interventions) and time (pre, 
post), interaction, and random effects of the participants.

Given that the RCS in the CRT did not show normality, 
the Wilcoxon signed-rank test was conducted. We used 
“r” as the effect size. Statistical significance was set at a 
P-value of < 0.05.
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