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Abstract 

Background: Auditory temporal processing plays an important role in speech comprehension. Usually, behavioral 
tests that require subjects to detect silent gaps embedded within a continuous sound are used to assess the ability 
of auditory temporal processing in humans. To evaluate auditory temporal processing objectively, the present study 
aimed to measure the auditory steady state responses (ASSRs) elicited by silent gaps of different lengths embedded 
within a broadband noise. We presented a broadband noise with 40-Hz silent gaps of 3.125, 6.25, and 12.5 ms.

Results: The 40-Hz silent gaps of 3.125, 6.25, and 12.5 ms elicited clear ASSRs. Longer silent gaps elicited larger ASSR 
amplitudes and ASSR phases significantly differed between conditions.

Conclusion: The 40 Hz gap-evoked ASSR contributes to our understanding of the neural mechanisms underlying 
auditory temporal processing and may lead to the development of objective measures of auditory temporal acuity in 
humans.

Keywords: Auditory steady state response (ASSR), Electroencephalography (EEG), Gap, Human, Speech perception, 
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Background
Hearing ability is typically assessed using pure tone 
audiometry; however, pure tone thresholds alone do not 
explain a person’s auditory skills. We need various audi-
tory skills for speech comprehension, especially auditory 
temporal processing plays a major role in speech recog-
nition [1]. Auditory temporal resolution implies the abil-
ity to extract temporal envelopes of sound signals, and is 
considered to be essential, particularly in discriminating 
each consonant [2].

Several behavioral measures have been developed to 
evaluate auditory temporal resolution in humans. One of 
these is a gap detection behavioral test in which a subject 
listens to a series of sounds with a short silent interval, 
called “gap”, and reports whether they perceived it or not 
[3, 4].

The gap detection thresholds (GDT) depended on the 
test sound types [5]. When pure tones were used as test 
sound signals, the GDT was 2–3 ms when the same test 
tone was used before and after the silent gap (within-
frequency-channel processing), and GDT was larger 
when the test tone frequencies differed before and after 
the silent gap (across-frequency-channel processing) [6, 
7]. One major problem in measuring GDT using pure 
tones is that spectral splatter is generated by the onset 
and offset of the tone signals. Test subjects might detect 
this spectral splatter rather than the temporal gap itself. 
To eliminate this issue, white noise is often used as a 
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test sound signal since the gap embedded within a white 
noise does not generate the spectral splatter. Previous 
studies reported that GDT for gaps embedded within a 
white noise ranged between 2 and 3 ms in normal hear-
ing individuals [8]; however, people with poor speech 
perception showed longer GDT [9–11]. Nair et  al. [12] 
demonstrated that the word discrimination ability was 
negatively correlated with the GDT as measured in old 
people with normal hearing.

Since the gap detection test requires a subject to 
respond to the presence or absence of a gap signal, it is 
difficult for infants, children, and people with cogni-
tive impairments to perform the test. To obtain hearing 
thresholds without active responses by subjects, audi-
tory evoked brain responses are often recorded using 
electroencephalography (EEG). The auditory brainstem 
response (ABR) and auditory steady-state response 
(ASSR) are often used in clinical settings. ABR is an audi-
tory evoked response that is generally recorded within 
10  ms of the application of a click stimulus. ABR is a 
standard measure to evaluate hearing thresholds in clini-
cal practice and represents neural activity in the periph-
ery to the brainstem of the auditory pathway [13]. ASSR 
is another auditory evoked response that is used for 
objective hearing threshold measurements. It is a sinu-
soidal steady-state auditory evoked response elicited by 
sounds with a periodic temporal structure. The most 
prominent ASSR could be obtained at a modulation 
frequency of 40 Hz [14] and the generator of the 40 Hz 
ASSR appears to be the primary auditory cortex [15, 16] 
which plays a major role in the neural processing of gap 
signals [17, 18].

ABR and ASSR enable objective measurements of hear-
ing thresholds; however, a standard objective measure 
of auditory temporal resolution has not yet been avail-
able Previous studies demonstrated that temporal gaps 
embedded within a continuous sound could elicit mis-
match negativity (MMN) and N1-P2 responses and the 
amplitudes of MMN and N1-P2 responses were signifi-
cantly correlated with the lengths of silent gaps [19–21]. 
However, to the best of our knowledge, there is no study 
that investigated the effects of gap lengths on ASSR.

Therefore, the goal of the present study was to measure 
ASSR elicited by 40-Hz silent gaps of different lengths 
embedded within a broadband noise using EEG and 
reveal the effects of gap lengths on the ASSR amplitudes 
and phases.

Methods
Participants
Twenty students (7 males) with normal pure-tone audi-
ometry were recruited at the International University 
of Health and Welfare for this experiment. Their ages 

ranged between 19 and 30  years (median 20  years). 
None of the participants had neurological or psychiatric 
disorder and took any drugs, including alcohol, within 
24  h prior to the experiment. They were fully informed 
about the study and gave written informed consent for 
their participation. The present study was approved by 
the Ethics Committee of the International University of 
Health and Welfare, School of Medicine and conformed 
to The Code of the World Medical Association (Declara-
tion of Helsinki).

Behavioral gap detection threshold (GDT)
GDT was measured in all participants. An adaptive, 
3-alternative forced-choice, 2-down 1-up procedure was 
used to track the 70.7% correct rate for GDT determina-
tion as described in detail in the previous studies [22, 23]. 
The length of the white noise (sampling rate: 48,000 Hz) 
was set to 500  ms; the silent gap was inserted in the 
center. The inter-stimulus interval between two succes-
sive test sounds was 500 ms. The silent gap length started 
from 7 ms. The step size was set to 1 ms in the first four 
reversals and 0.5 ms thereafter. The measurements were 
continued for 12 reversals, and the threshold was esti-
mated as the mean of the values for the last eight rever-
sals. Thresholds were measured twice, and the mean of 
the two measurements was used as the GDT.

Stimuli and experimental design for EEG recording
We prepared 20 white noises (sampling rate: 48,000 Hz) 
having the same intensity with a duration of one minute 
as test sound stimuli for EEG measurements by using 
MATLAB R2020a (The MathWorks Inc., MA, USA). 
Then, we divided them into four types of test sound 
stimuli. One type was a continuous white noise with no 
silent interval (GAP_0), and the others were white noises 
with silent gaps with durations of 3.125 ms (GAP_3.125), 
6.25  ms (GAP_6.25), and 12.5  ms (GAP_12.5) (Fig.  1). 
Silence was inserted every 25 ms to match the modula-
tion frequency of 40 Hz. More specifically, 21.875, 18.75, 
and 12.5  ms white noises were followed by 3.125, 6.25, 
and 12.5  ms silent gaps in GAP_3.125, GAP_6.25, and 
GAP_12.5 conditions, respectively. These gap lengths 
were exponentially equally spaced and were determined 
based on GDT and the modulation period (25  ms). We 
adopted half of the modulation period (12.5  ms) as the 
maximum gap length and one-eighth of the modulation 
period (3.125  ms) as the minimum gap length that is 
slightly larger than the GDT in normal hearing individu-
als (2–3 ms) [8]. The exemplary sound files are given in 
Additional File 1: GAP_0, GAP_3.125, GAP_6.25, and 
GAP_12.5 were randomly played for 20 min, resulting in 
five minutes in total for each gap condition.
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Participants were presented with GAP_0 at an inten-
sity of 70 dBA SPL via ER-3A insert earphones (Etymotic 
Research Inc., IL, USA). EEG recordings were performed 
with participants seated comfortably in a silent electro-
magnetically shielded room. They were instructed to 
watch a silent movie with captions during experiments.

Data acquisition and analysis
Sound stimuli were presented via Multi Trigger System 
Ver.2 (MTS0410, Medical Try System, Co., Ltd., Japan), 
which simultaneously sent electric triggers to Neurofax 
EEG1200 (Nihon Koden, Co., Ltd., Japan). We used four 
types of triggers and each trigger was synchronized with 
the onset of each sound stimulus (GAP_0, GAP_3.125, 
GAP_6.25, or GAP_12.5). The EEG signals were recorded 
using a Neurofax EEG1200 system at a sampling rate 
of 1000  Hz. The recording electrodes (Ag/AgCl) were 
located at Cz, Fz, C3, and C4 according to the interna-
tional 10–20 system. The data from Fz, C3, and C4 were 
used to reduce the electro-cardiac signals in Cz by ECG 
elimination filter implemented in the Neurofax EEG1200 
system. Therefore, the data from Cz were used for the 
statistical analysis. The average signal of two electrodes 
placed on both mastoids was used as a reference, and the 
ground electrode was located at Fpz around the forehead 
midpoint. Electrode impedance was maintained below 15 
kΩ. Recorded EEG data were exported as ascii files and 
were analyzed offline using Matlab R2020a and EEGLAB 
[24].

For EEG waveforms at Cz, a fast Fourier transform was 
computed in each condition and amplitude spectra were 
extracted after removing the powerline fluctuations at 

50 Hz using the Clean-Line plugin for EEGLAB. In order 
to obtain ASSR, an epoching procedure was applied to 
the EEG signals. Using Matlab, markers were inserted 
into the EEG data at the time points of gap onsets (the 
end of broadband noise) and gap offsets (the beginning 
of broadband noise) of the gap-embedded sound stimu-
lus (GAP_3.125, GAP_6.25, or GAP_12.5) based on the 
trigger synchronized with the sound stimulus onset. 
One test sound contained 2400 silent gaps and five test 
sounds were presented for each GAP condition. In total, 
12,000 gap onset markers and 12,000 gap offset markers 
were labeled for each GAP condition of each participant. 
EEG waveforms at Cz were bandpass filtered (32–48 Hz) 
offline and epochs of 0 to 24  ms (25 sampling points) 
from the markers were averaged after artifact rejec-
tion (set to a threshold of ± 50  μV) separately for each 
gap-embedded noise condition (GAP_3.125, GAP_6.25, 
or GAP_12.5) for each participant. The obtained ASSR 
waveforms were fitted into the 40  Hz sinusoidal curves 
Y = a* sin(X–b), then the amplitudes (a) and the phase 
delays (b) were used for the statistical analysis.

Pearson correlation coefficients were calculated to 
assess the linear relationships between GDT and ASSR 
amplitudes for GAP_3.125, GAP_6.25, and GAP_12.5 
conditions. ASSR amplitudes were evaluated using a 
repeated-measures analysis of variance (ANOVA) using 
GAP (GAP_3.125, GAP_6.25, and GAP_12.5) as a factor. 
The ASSR phase delay was calculated from the gap onset 
(the end of broadband noise) and from the gap offset 
(the beginning of broadband noise), respectively. ASSR 
phase delays from the gap onset and gap offset were 
evaluated using one-way repeated-measures ANOVA 

Fig. 1 Schematic display of the auditory stimulation. Examples of test sound stimuli with silent gaps of 0 (GAP_0), 3.125 (GAP_3.125), 6.25 
(GAP_6.25), and 12.5 ms (GAP_12.5) are depicted from top to bottom, respectively. For sample audio files, access Online Resource 1.
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using GAP (GAP_3.125, GAP_6.25, and GAP_12.5) as a 
factor, respectively. For all the ANOVA tests, sphericity 
was assessed for each within-subject factor with Mauch-
ly’s Test [25] and the degrees of freedom were corrected 
using Greenhouse–Geisser epsilon when appropriate. 
Bonferroni corrected paired t-tests were performed for 
post hoc multiple comparisons of GAP factors. All statis-
tics were conducted using IBM SPSS Statistics Version 21 
for Windows (Armonk, NY: IBM Corp.) and significance 
was accepted at p < 0.05.

Results
All participants completed GDT measurements. The 
mean and standard deviation of their GDT were 2.56 
and 0.27  ms. The mean rejection rate of artifact-con-
taminated EEG epochs was 6.3%. Figure 2 shows the fast 
Fourier transformation waveforms averaged across all 
the participants under each condition. Figure 2 shows no 
prominent peak at 40 Hz in the continuous white noise 
condition (bottom right), whereas prominent 40  Hz 
peaks are visible in all the GAP conditions. The longer 
GAP conditions induced the larger 40 Hz power spectral 
peaks.
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Fig. 2 Group means (N = 20) of the EEG amplitude spectra. Grand averaged (N = 20) EEG amplitude spectra corresponding to GAP_12.5 (top left), 
GAP_6.25 (top right), GAP_3.125 (bottom left), and GAP_0 (bottom right) at Cz.
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Fig. 3 Grand averaged (N = 20) auditory steady state responses (ASSRs) elicited by 40-Hz silent gaps. The graph displays the grand-averaged 
waveforms of participants (N = 20). The dashed, dotted, and solid lines represent GAP_12.5, GAP_6.25, and GAP_3.125 conditions, respectively (see 
legends in the right upper corner).
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Figure 3 demonstrates grand averaged EEG waveforms 
under GAP_3.125, GAP_6.25, and GAP_12.5 condi-
tions. The waveforms represented clear 40  Hz sinusoi-
dal curves. Figure  4 shows the mean ASSR amplitudes 
under each GAP condition together with the correspond-
ing 95% confidence intervals obtained by boot-strap 
resampling tests (iteration = 100 000). There was no 
significant correlation between the GDT and the ASSR 
amplitudes in GAP_3.125 (r (18) = 0.287, p = 0.219), 
between the GDT and the ASSR amplitudes in GAP_6.25 
(r (18) = 0.276, p = 0.239), and between the GDT and the 
ASSR amplitudes in GAP_12.5 (r (18) = 0.127, p = 0.595).

The one-way repeated-measures ANOVA applied to 
the ASSR amplitude revealed a significant main effect for 
GAP (F (1.162, 22.072) = 111.124, p < 0.00001). Post hoc 
multiple comparisons revealed significant differences 
between GAP_3.125 and GAP_6.25 (t (19) = −  5.706, 
p < 0.0001), GAP_3.125 and GAP_12.5 (t(19) = − 10.698, 
p < 0.00001), and GAP_6.25 and GAP_12.5 (t 
(19) = − 13.683, p < 0.00001). The ASSR amplitude signif-
icantly increased with an increase in the gap length.

Figure 5 shows mean phase delays from the gap onset 
in each GAP condition together with the corresponding 
95% confidence intervals obtained by boot-strap resa-
mpling tests (iteration = 100 000). The phase delays in 
GAP_3.125, GAP_6.25, and GAP_12.5 ranged between 
131.7 and 260.1 degrees (mean 193.8 degree), 149.4 
and 260.2 degrees (mean 211.6 degree), 233.8 and 307.7 
degrees (mean 275.1 degree), respectively. The one-way 

repeated-measures ANOVA applied to the ASSR phase 
delays from the gap onset resulted in a significant main 
effect for GAP (F (1.485, 28.223) = 99.185, p < 0.00001). 
Post hoc multiple comparisons revealed significant dif-
ferences, GAP_3.125 and GAP_12.5 (t (19) = −  12.001, 
p < 0.00001), and GAP_6.25 and GAP_12.5 (t (19) = 
−  16.272, p < 0.00001), but no significant difference 
between GAP_3.125 and GAP_6.25 (t (19) = −  2.526, 
p = 0.062). The ASSR phase delayed with an increase in 
the gap length.

Figure 6 shows mean phase delays from the gap offset 
in each GAP condition together with the correspond-
ing 95% confidence intervals obtained by boot-strap 
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Fig. 4 Group means (N = 20) of ASSR amplitudes. Group means 
(N = 20) of ASSR amplitudes elicited by silent gaps of 0, 3.125, 6.25, 
and 12.5 ms embedded within broadband noises at Cz. The error bars 
denote 95% confidence intervals.
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Fig. 5 Group means (N = 20) of the ASSR phase delays from the gap 
onset. Group means of the ASSR phase delays from the gap onset 
(offset of the continuous noise) elicited by silent gaps of 3.125, 6.25, 
and 12.5 ms embedded within broadband noises at Cz. Error bars 
denote 95% confidence intervals.
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Fig. 6 Group means (N = 20) of the ASSR phase delays from the gap 
offset. Group means of the ASSR phase delays from the gap offset 
(onset of the continuous noise) elicited by silent gaps of 3.125, 6.25, 
and 12.5 ms embedded within broadband noises at Cz. Error bars 
denote 95% confidence intervals.
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resampling tests (iteration = 100 000). The phase delays 
in GAP_3.125, GAP_6.25, and GAP_12.5 ranged between 
86.8 and 215.1 degrees (mean 148.8 degree), 59.4 and 
170.2 degrees (mean 121.6 degree), 53.8 and 127.7 
degrees (mean 95.1 degree), respectively. The one-way 
repeated-measures ANOVA applied to the ASSR phase 
delays from the gap offset resulted in a significant main 
effect for GAP (F (1.485, 28.223) = 39.166, p < 0.00001). 
The post hoc multiple comparisons revealed signifi-
cant differences between GAP_3.125 and GAP_6.25 (t 
(19) = 3.879, p < 0.004), GAP_3.125 and GAP_12.5 (t 
(19) = 7.930, p < 0.00001), and GAP_6.25 and GAP_12.5 
(t (19) = 6.776, p < 0.00001). Contrary to the phase delays 
from the gap onset (Fig.  5), the ASSR phase gradually 
advanced with an increase in the gap length.

Discussion
The results of the present study demonstrated that clear 
ASSRs were elicited by 40-Hz silent gaps embedded 
within a broadband noise and the amplitude and phase 
of the gap-evoked ASSR significantly depended on the 
gap length. Usually, ASSR is elicited by the appearance 
of the sound signals and sound types significantly influ-
enced the amplitude and phase of 40-Hz ASSR [14]. In 
the present study, we used the disappearance of sound 
signals as test stimuli and successfully obtained promi-
nent 40-Hz ASSR elicited by silent gaps of 3.125, 6.25, 
and 12.5  ms (see Figs.  2 and 3). Moreover, the ASSR 
amplitude increased in proportion to the length of the 
silent gaps as shown in Fig.  4. The phase delays of gap-
evoked ASSR significantly differed between GAP condi-
tions (GAP_3.125, GAP_6.25, and GAP 12.5, see Figs. 5 
and 6). When the phase delays were calculated from the 
gap onset (or the offset of the noise segment) phases were 
delayed as the gap became longer (Fig.  5). In contrast, 
when the phase delays were calculated from the gap off-
set (or the onset of the noise segment) they advanced as 
the gap became longer (Fig. 6). A previous study demon-
strated that the phase of ASSR advanced and the ampli-
tude increased as the intensity of the stimuli increased 
from 35 to 75 dB SPL [26]. Furthermore, the N1 response 
elicited by a longer gap had a shorter latency and larger 
amplitude [27]. These findings support the hypothesis 
that not the offset, but the onset of broadband noise (or 
the offset of the gap) would play a major role in triggering 
ASSR.

Previous studies reported that the gaps in continu-
ous sounds could elicit the auditory evoked responses, 
such as MMN, N1, and P2. The amplitude of MMN has 
been shown to increase in proportion to the gap length 
[21]. Moreover, the study demonstrated more delayed 
and smaller amplitude MMN responses to silent gaps 
in older adults with normal hearing than in younger 

adults despite the absence of behavioral differences in 
gap detection. A previous study showed that N1 and P2 
responses in healthy adults were obtained when the gap 
length was 5  ms or longer and also that the amplitudes 
of N1 and P2 were smaller when the gap length became 
shorter [28]. The present study also showed that the 
longer gap embedded within a continuous sound elic-
ited the larger and more advanced ASSR time-locked 
to the gap offset than the shorter gap. ASSR has differ-
ent characteristics with other auditory evoked responses, 
such as N1, P2, and MMN. ASSR is less sensitive to alert-
ness and attention than slow auditory evoked responses 
and MMN. Previous studies demonstrated that auditory 
attention enhanced ASSR [29, 30], whereas others did not 
[31–34]. Even though attention may modulate the ASSR 
amplitude, the attentional effect on ASSR appears to be 
smaller than that on slow auditory evoked responses [35]. 
Furthermore, ASSR is more stable against aging than 
other auditory evoked responses. MMN was significantly 
smaller in healthy elderly individuals than in younger 
adults [21, 36, 37] and significant age-related changes 
have been reported in N1, P2, N2, and P300 [38, 39]. In 
contrast, normal aging appears to have less influence on 
the amplitude of 40-Hz ASSR [40, 41]. A previous study 
compared the amplitude of 40-Hz ASSR in young adults 
and elderly individuals and found no significant differ-
ences in the amplitude or phase of 40-Hz ASSR between 
these age groups [41]. These previous studies suggest that 
the gap-evoked ASSR may represent neural activity more 
specific to the auditory temporal processing than other 
slow auditory evoked components.

The neural processing of silent gaps appears to dif-
fer from that of normal sound stimuli. Previous studies 
reported that lesions of auditory cortex did not affect 
the detection of sound increments (such as noise bursts) 
but deteriorated the detection of brief sound decrements 
(such as gaps in noise) [17, 18, 42–44]. A previous study 
reported that the N1 response elicited by gaps in a con-
tinuous noise had distinct scalp distribution and intrac-
ranial neural sources compared to that elicited by clicks 
[27]. Another study demonstrated that the ASSR ampli-
tudes elicited by the brief tones increased as stimulus 
duration decreased [45], whereas our results showed that 
the ASSR amplitudes elicited by the silent gaps decreased 
as the gap duration decreased. These findings suggested 
that the ASSR elicited by the gaps of different lengths in 
the present study at least partially differed from those 
elicited by presentations of sound signals such as tone 
bursts, amplitude-modulated tones, noises and clicks.

Regarding the clinical importance of measuring 
the temporal resolution in humans, previous studies 
found that the gap detection test was effective in iden-
tifying auditory processing disorder [46], children with 
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reading and writing difficulties [47], autism [48], and 
even Alzheimer’s disease [49]. However, since temporal 
resolution is usually assessed by means of behavioral 
tasks, there is a serious concern that the deteriorations 
in thresholds that appeared after monotonous behav-
ioral testing in those people who cannot reliably com-
plete behavioral tests may be caused by psychological 
or psychiatric factors other than auditory process-
ing disorder. ASSR is a stable and completely objec-
tive test that does not require the participant’s active 
responses. Therefore, the gap-evoked ASSR obtained in 
the present study appears to be especially beneficial to 
non-invasively and objectively assess the auditory tem-
poral processing in the above disorders. However, the 
limitation of this experiment is that only people with 
normal hearing and GDT participated in the present 
study. It remains unsolved whether gap-evoked ASSRs 
measured in people with deteriorated auditory tempo-
ral processing differ from those obtained in the recent 
study. Thus, it is necessary to measure the gap-evoked 
ASSR in people with prolonged GDT in the future 
studies.

Conclusions
The present results showed that 40-Hz silent gaps embed-
ded within broadband noise elicited significant ASSR. 
The ASSR amplitude increased and the ASSR phase from 
the gap offset advanced in proportion to the gap length. 
The gap-evoked ASSR would contribute to our under-
standing of the neural mechanisms underlying auditory 
temporal processing and be applied to objectively meas-
ure auditory temporal acuity in humans.
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