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Abstract
Introduction: NAP (Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln, single amino acid letter code, NAPVSIPQ),
an eight amino acid neuroprotective peptide derived from activity-dependent neuroprotective
protein (ADNP), exhibits some structural similarity to activity-dependent neurotropic factor-9
(ADNF-9; Ser-Alal-Leu-Leu-Arg-Ser-Ile-Pro-Ala, SALLRSIPA). Both peptides are also active in the
all D-amino acid conformation, termed D-NAP and D-SAL. Original results utilizing affinity
chromatography coupled to mass spectrometry identified tubulin, the subunit protein of
microtubules, as the major NAP-associating protein in brain. The NAP-tubulin association was
found to be diminished in the presence of ADNF-9, D-NAP, and D-SAL, suggesting a common
target of neuroprotection. The β amyloid peptide interacts with microtubules, and previous studies
have demonstrated protection against β amyloid (25–35) toxicity by NAP and ADNF-9. NAP also
inhibits β amyloid (25–35 and 1–40) aggregation.

Methods: Cerebral cortical cultures derived from newborn rats were used in neuronal survival
assays to test the activity of both NAP and D-SAL against the major Alzheimer's disease toxic
peptide β amyloid (1–42).

Results: NAP and D-SAL protected cerebral cortical neurons against the major Alzheimer's
disease toxic peptide β amyloid (1–42). Maximal protection of both peptides was observed at
concentrations of 10-15 to 10-10 mol/l.

Conclusion: These findings, together with those of previous in vivo studies conducted in relevant
Alzheimer's disease models, pave the path to drug development. Bioavailability studies indicated
that NAP penetrates cells and crosses the blood-brain barrier after nasal or systemic
administration. Phase II clinical trials of NAP are currently in progress by Allon Therapeutics Inc.
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Introduction
ADNP and ADNF
NAP (Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln, single amino acid
letter code, NAPVSIPQ, an eight amino acid neuroprotec-
tive peptide) is derived from activity-dependent neuro-
protective protein (ADNP) [1,2], a protein that
differentially interacts with chromatin to regulate genes
that are essential for brain formation and embryogenesis
[3-5]. Furthermore, recombinant ADNP is neuroprotec-
tive in vitro against severe oxidative stress and neurotoxic-
ity associated with the Alzheimer's disease neurotoxin β
amyloid peptide (25–35) [6]. ADNP synthesis and secre-
tion is induced by the neuroprotective vasoactive intesti-
nal peptide [1,7]. Activity-dependent neuroprotective
factor (ADNF) was isolated from conditioned medium of
astrocytes treated with vasoactive intestinal peptide that,
in turn, was initially found to be associated with embry-
onic development and brain protection [8-11]. The active
core of ADNF, namely ADNF-9 (SALLRSIPA), exhibits
structural and functional similarities with NAP [1,12,13].

NAP and ADNF-9: protection against β amyloid toxicity
A comprehensive review detailing NAP neuroprotective
activity and clinical development [14] and a short review
detailing NAP neurotropism in vitro were recently pub-
lished [15]. Furthermore, NAP was found to enhance neu-
rodevelopment of newborn apolipoprotein E-deficient
mice subjected to hypoxia, suggesting neurotropic activity
in vivo [16]. NAP was initially discovered to protect against
β amyloid (amino acids 25–35) toxicity in rat cerebral
cortical neurons seeded on a bed of astrocytes, and these
studies were extended to show that NAP protected against
β amyloid (25–35) in neuronal enriched cultures [1,17].
The primary structure of NAP includes two prolines that
confer β sheet breaking characteristics, and NAP was
shown to decrease the aggregation of the β amyloid pep-
tide (25–35 and 1–40) [18].

The function and properties of ADNF-9 were recently
reviewed [11]. Regarding Alzheimer's disease, ADNF-9
protects against the toxicity of β amyloid peptide (25–35)
[9] and (1–42) [19]. In addition, primary hippocampal
neurons from presenilin 1 mutant knock-in mice, exhibit-
ing increased production of amyloid β peptide 42–43 and
increased vulnerability to excitotoxicity, were protected by
pretreatment with ADNF-9 [20].

The all D-amino acid analogs of NAP and ADNF-9 (D-
NAP and D-SAL, respectively) have both been found to
exhibit neuroprotective activity [21]. Here, we present
data on the novel finding that NAP and D-SAL also protect
against β amyloid (1–42) toxicity.

Materials and methods
Materials
The octapeptides NAP and D-SAL were synthesized by
Professor M Fridkin and Ms S Rubinraut at the Depart-
ment of Organic Chemistry of the Weizmann Institute of
Science (Rehovot, Israel) and Bachem (Torrance, CA,
USA).

All peptides were dissolved in distilled sterile water to a
concentration of 1 mmol/l and then diluted in water in
1:10 steps down to the required concentration. The β
amyloid peptide (1–42) was obtained from American
Peptides Company (Sunnyvale, CA, USA).

Cell cultures and neuronal survival
Cerebral cortical cultures derived from newborn rats were
used for neuron survival assays. For mixed neuroglial cul-
tures, neurons (300,000 cells/35 mm dish) were seeded
on 8-day-old astrocytes prepared as described [1,21]. Cells
were allowed to grow for 1 week at 37°C (10% carbon
dioxide) before experiments were performed. Four days
after neuronal plating, cultures were given their respective
treatment and assayed for neuronal survival after an addi-
tional 5-day incubation period.

Neuronal cell counts
The culture medium was removed and cells were washed
twice with phosphate buffered saline. A volume of 1.5 ml
of 3% gluteraldehyde (Fluka Biochemika, Steinheim, Ger-
many) in 0.1 mol/l cacodylic acid (pH 7.2; Fluka Bio-
chemika) was added for 2 hours. The cells were then
washed with phosphate buffered saline and 2 ml of 0.15
mol/l cacodylic acid (pH 7.2) was added. Neuronal iden-
tity was established by morphological criteria using an
Olympus CK2 light microscope (Olympus, Tokyo, Japan)
with a 40× lens. Fifty fields were counted per dish [17].

Results
The number of surviving neurons was assessed in cerebral
cortical cultures derived from newborn rats using 2.5
μmol/l of β amyloid peptide (1–42), a toxin associated
with Alzheimer's disease. NAP and D-SAL were used at the
following concentrations: 10-16 mol/l, 10-15 mol/l, 10-12

mol/l, and 10-10 mol/l. The peptides protected against
neurotoxicity associated with the β amyloid peptide (1–
42; P < 0.001). Maximal protection of both peptides was
observed at concentrations of 10-15 mol/l to 10-10 mol/l
(Figure 1). No differences were observed between NAP
and D-SAL in terms of neuroprotection. Cell counts
totaled more than 100% of control. This may be because
the treatment prevented neuronal cell death that occurred
naturally in the cultures (10% to 20%), as previously
observed [1].
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Discussion
Interactions of NAP and D-SAL with microtubules
The β amyloid peptide (1–42) has been shown to aggre-
gate into oligomers along microtubules of neuronal proc-
esses, both in Tg2576 mice and human Alzheimer's
disease brain [22]. In triple transgenic Alzheimer's disease
mice expressing three mutant transgenes (amyloid precur-
sor protein [double Swedish, K670M/N671L], presenilin
1 [M146V], and tau [P301L]) [23], β amyloid accumula-
tion occurs before tau hyperphosphorylation. These find-
ings have been suggested to imply, at least in part, a
possible cause and effect relationship between β amyloid
and tau pathology. A main target of NAP in neuroprotec-
tion appears to be tubulin, which is the major subunit of
microtubules. Affinity chromatography studies utilizing
immobilized NAP identified tubulin as the NAP associat-
ing protein [24]. D-SAL diminished tubulin association
with the NAP affinity column, suggesting an interaction of
tubulin with D-SAL as well [25]. Tubulin antibodies iden-
tified NAP interaction with the neuron-specific tubulin
subunit β III, as well as with astrocyte tubulin [26]. Fur-
ther studies showed that although vincristine (which

enhances microtubule depolymerization and crystal for-
mation) did not diminish the interaction of NAP with
tubulin, paclitaxel (a microtubule stabilizing agent) did
diminish this interaction [26]. NAP accelerated microtu-
bule formation after nocodazole depolymerization in
neurons [27]. Furthermore, NAP prevented microtubule
disassembly caused by zinc chloride intoxication in astro-
cytes [24] and in neurons [26].

The temporal changes in microtubule assembly that fol-
lowed NAP treatment in cells paralleled changes in phos-
phorylation of the tubulin-associated protein, tau [28].
This finding suggests that NAP regulates tau phosphoryla-
tion alongside microtubule dynamics and protects astro-
cytes and neurons. In the triple transgenic Alzheimer's
disease mouse model, NAP reduced tau hyperphosphor-
ylation [29]. Because tau hyperphosphorylation has been
associated with major neurodegenerative diseases, includ-
ing Alzheimer's disease, NAP holds promise as a neuro-
protective/neurotropic drug candidate.

Bioavailability
Cellular bioavailability
Fluoresceine-labeled NAP was detected in the intracellular
milieu of neurons and astrocytes. In astrocytes, labeled
NAP was found even when incubated at 4°C and in con-
ditions of low pH, indicating membrane permeability.
Furthermore, comparison of NAP with known membrane
permeating peptides has revealed that NAP possesses a
membrane permeation structure [24]. Because both NAP
and ADNF-9 are active in their all D-amino acid confor-
mation, these peptides were suggested to be mechanisti-
cally achiral [21]. It is our working hypothesis that NAP
interacts with intracellular tubulin to enhance microtu-
bule polymerization and provide cellular protection.
However, NAP interacts with specific tubulin subunits
and does not provide protection to all cells. Indeed, NAP
did not protect fibroblast-like cells, but did protect neuro-
nal-like cells against oxidative stress [26]. These results are
in accordance with our original studies suggesting that
NAP selectively interacts with brain specific tubulin subu-
nits that are associated with multiple tubulin functions
[30-32].

Brain bioavailability and clinical development
The pharmacodynamic compartment for NAP is the brain
or the central nervous system. When NAP is administered
it must be able to reach this target compartment at phar-
macologically active concentrations. As shown in Figure 1,
NAP exhibits an in vitro potency of about 10-15 mol/l. Pre-
clinical and phase I clinical experiments demonstrated
that intranasal administration of NAP to rat, dog, or
human results in measurable plasma levels [14]. After
intranasal administration of [3H]NAP to rats, radioactivity
was detected in the blood and was also measured in the

The eight and nine amino acid peptides (NAP and D-SAL, respectively) provide neuroprotection against β amyloid (1–42)Figure 1
The eight and nine amino acid peptides (NAP and D-SAL, 
respectively) provide neuroprotection against β amyloid (1–
42). Mixed neuroglial cultures were exposed to 2.5 μmol/l β 
amyloid peptide (1–42) for 5 days, resulting in about 40% cell 
death. The respective peptides were added together with the 
toxin at indicated concentrations (10-16 mol/l, 10-15 mol/l, 10-

12 mol/l, and 10-10 mol/l). Experiments were repeated at least 
three times. Results were normalized by untreated cells. ***P 
< 0.001, cells treated with either NAP or D-SAL versus β 
amyloid alone (without peptide treatment). D-SAL, D-amino 
acid analog of activity-dependent neuroprotective factor 9; 
NAP, Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln, single amino acid let-
ter code, NAPVSIPQ, an eight amino acid neuroprotective 
peptide derived from activity-dependent neuroprotective 
protein.
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various organs of the body [33]. Intact peptide was iden-
tified in the rat cortex 30 and 60 minutes after intranasal
administration. In the permanent middle cerebral artery
occlusion rat model, intravenous administration of radio-
active NAP resulted in measurable levels in the cerebellum
and cortex 15 minutes after injection and was maintained
for at least 30 minutes in ischemic tissue [34]. Liquid
chromatography mass spectrometry assays in rats and
dogs corroborated and extended these results. Recent data
from a pharmacokinetic study conducted in rats suggested
a correlation between plasma and cerebrospinal fluid lev-
els of NAP administered by intravenous injection. After
intranasal administration in the rat, appeared NAP rapidly
in plasma and the kinetics of appearance in cerebrospinal
fluid (Tmax) appeared to lag plasma Tmax [14,35]. It is
therefore likely that access to the brain is via the circula-
tion for both intravenous and intranasal routes.

Conclusion
NAP and D-SAL protect against the Alzheimer's disease
neurotoxin β amyloid peptide (1–42), which suggests
potential treatments for Alzheimer's disease pathology.
This finding, together with previous findings including
animal efficacy and bioavailability studies, steer these
compounds toward clinical development. Allon Thera-
peutics Inc. [36] recently released top-line results of a
phase IIa clinical trial showing that its drug AL-108 (the
intranasal formulation of NAP) has a positive impact on
memory function in patients with amnestic mild cogni-
tive impairment, which is a precursor to Alzheimer's dis-
ease.

List of abbreviations used
ADNF: activity-dependent neuroprotective factor; ADNP:
activity-dependent neuroprotective protein; NAP: Asn-
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