BMC Neuroscience

Poster presentation

Open Access

Operant behavior controlled by position of a moving object – a reinforcement learning model

Cyril Brom*1, Daniel Klement2 and Michal Preuss1

Address: ¹Dept. of Software and Computer Science Education, Faculty of Mathematics and Physics, Charles University in Prague, 118 00, Czech Republic and ²Dept. of Neurophysiology of Memory and Computational Neuroscience, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, 142 00, Czech Republic

Email: Cyril Brom* - brom@ksvi.mff.cuni.cz

* Corresponding author

from Seventeenth Annual Computational Neuroscience Meeting: CNS*2008 Portland, OR, USA. 19–24 July 2008

Published: II July 2008

BMC Neuroscience 2008, 9(Suppl 1):P75 doi:10.1186/1471-2202-9-S1-P75

This abstract is available from: http://www.biomedcentral.com/1471-2202/9/S1/P75

© 2008 Brom et al; licensee BioMed Central Ltd.

Description

It has been demonstrated that operant behavior can be controlled by spatial stimuli. In one of our experiment, rats were conditioned to press a lever for reward when a moving object was passing through a particular region of the experimental room (unpublished data). Although the stimulus was changing smoothly, the transitions between rewarded and non-rewarded condition were sudden. Consequently the animals anticipated the arrival to the rewarded zone by responding in its vicinity.

We developed a reinforcement learning model to simulate this anticipatory behavior and to study its spatial and temporal components. An output neuron integrated inputs from four classes of sensory neurons: (1) neurons detecting the position of the object, (2) neurons indicating the time elapsed since the last reward and (3) since the last operant response, and (4) a neuron signaling the presence/absence of the reward. While the output neuron was a leaky-integrator with a binary activation function, a manner for sending a motor signal to press the lever, the sensory neurons were simple nodes lacking the time dynamic component that signaled the presence of a stimulus in their receptive field in a rate-coded manner. The synapses between the sensory neurons and the output neuron were modified according to a rule based on the Rescorla-Wagner rule [1]. The overall model resembles the spectral-timing model of Grossberg and Schmajuk [2] extended to the spatial domain.

Depending on the set up of learning parameters related to the different classes of sensory neurons, the network can learn the spatial and/or temporal features of the task resulting in spatial and/or temporal anticipation of the reward. The network well approximates data observed in real animals.

Acknowledgements

This work was supported by grants of MSMT (IM0517, LC554, and MSM0021620838) and research projects AVOZ50110509 and IET100300517.

References

- Rescorla RA, Wagner AR: A theory of Pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement. In Classical Conditioning II: Current Research and Theory New-York: Appleton-Century-Crofts; 1972:64-69.
- Grosberg S, Schmajuk NA: Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks 1989, 2:79-102.