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Introduction
We have studied a spiking, reinforcement learning model
derived from reward maximization [1,2] where causal
relations between pre-and postsynaptic activity set a syn-
aptic eligibility trace [2,3]. Neurons are modeled accord-
ing to the "Integrate-and-Fire" model with escape noise.
Synapses are binary and are modulated via the release
probability. The synaptic release probability is updated
when a global reward signal (such as dopamine) is
received.

We have used the learning algorithm in a model of the
Morris Water Maze task. The simulated rat explores the
environment in random search. After only few trials the
rat has learned to approach the goal from arbitrary start
conditions, see Figure 1. The model features automatic
generalization in state and action space due to coding by
overlapping profiles of place cell and action cells [4].
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Escape latency versus number of trialsFigure 1
Escape latency versus number of trials. Escape latency meas-
ures the time it takes the simulated rat to reach a hidden 
platform starting from arbitrary initial conditions. Learning is 
achieved in less than 20 trials. Error bars indicate 25% and 
75% percentiles.
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