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Abstract
Dynamic modeling and simulation of signal transduction pathways is an important topic in systems
biology and is obtaining growing attention from researchers with experimental or theoretical
background. Here we review attempts to analyze and model specific signaling systems. We review
the structure of recurrent building blocks of signaling pathways and their integration into more
comprehensive models, which enables the understanding of complex cellular processes. The
variety of mechanisms found and modeling techniques used are illustrated with models of different
signaling pathways. Focusing on the close interplay between experimental investigation of pathways
and the mathematical representations of cellular dynamics, we discuss challenges and perspectives
that emerge in studies of signaling systems.

Introduction
Signaling pathways enable cells to sense changes in their
environment, to integrate external or internal signals, and
to respond to them by changes in transcriptional activity,
metabolism, or other regulatory measures. The proper
functioning of these pathways is crucial for adaptation
and survival under varying conditions, but also for differ-
entiation and cell fate. In multicellular organisms, signal-
ing pathways play an important role in development and
oncogenesis, but also in neural plasticity. Signaling path-
ways frequently consist of ubiquitous building blocks,
such as receptors, ERK or MAP kinase cascades, G proteins
and small G proteins, and their design seems to be con-
served throughout all kingdoms of life.

At first glance, signaling can be seen as a linear connection
between input elements (the receptors) and output ele-
ments (such as regulators of gene expression). A closer
inspection reveals that signaling pathways interact with
each other, forming a network. Schwartz [1] introduced
the notion of crosstalk, referring to the case that two

inputs (here: growth factors from different families) work
through distinct signaling pathways but cooperate to reg-
ulate cell growth. Intensive experimental work has
revealed numerous potential paths for crosstalk.

In order to understand the complex behavior of signaling
networks, researchers have adopted computational mod-
eling approaches, ranging from abstract models that
emphasize some key features of signaling pathways [2,3]
to detailed models that describe the dynamics of specific
pathways in specific organisms [e.g. [4-7]]. Several models
from both categories have been developed and experi-
mentally tested, which has revealed interesting behavior.
Overviews on structural properties and dynamic features
of signaling pathway models are given in [8,9].

Modeling of biochemical networks can help to integrate
experimental knowledge into a coherent picture and to
test, support, or falsify hypotheses about the underlying
biological mechanisms. The behavior of complex systems
is often hard to grasp by intuition, because our reasoning
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tends to follow simple causal chains: if feedback cycles
come into play or if the relative timing of processes makes
a difference, then mathematical simulation may be more
reliable than mere intuition. Modeling emphasizes the
holistic aspects of signaling networks, which disappear if
the components are studied in separation in different wet
labs around the globe. Furthermore, once a model has
been established, it can be used to test hypotheses or sim-
ulate experiments that would be hard or impossible to do
in the lab.

In this review, we will illustrate the modeling of signaling
pathways with examples from different cell types and dis-
cuss some problems that we consider open in the mode-
ling of such pathways. We will first present the building
blocks of signaling pathways and describe the iterative
process of model building and the integration of path-
ways. We will then outline mathematical techniques and
general results that have been obtained by mathematical
analysis. To illustrate these points, we will review a
number of models that have been established for signal-
ing systems in eukaryotic cells, with an emphasis on neu-
ron cells.

Components of signaling pathways
Despite their diversity in function and design, many sign-
aling pathways use the same essential components, which
are often highly conserved through evolution and
between species. For example, proteins in yeast pathways
have homologs in human pathways (e.g. Hog1 and p38,
both MAP kinases that are active in osmoregulation).
Here, we will introduce the most prevalent signaling path-
way modules.

Most receptors are transmembrane proteins that receive
extracellular stimuli by ligand binding and transmit the
signal to intracellular signaling molecules. Upon signal
sensing, they dimerize or change their conformation and
become active (Figure 1A), now being able to initiate
downstream processes. Cells can regulate the number and
the activity of specific receptors, e.g. in order to shut off
the signal transmission during sustained stimulation. An
interplay of production and degradation regulates the
number of receptors (for a model involving receptor inter-
nalization in the yeast pheromone pathway see [6]).
Phosphorylation of serine/threonine or tyrosine residues
in the cytosolic domain by protein kinases can regulate
the activity and thereby adapt the signaling system to
input signals of different intensity. This tuning of sensors
by feedback control can allow for exact adaptation as it is
vital for bacterial chemotaxis[10,11].

Similarly, the calcium influx at AMPA-type glutamate
receptors in glutamatergic synapses [12] can be tuned by
the phosphorylation of serine residues. The next step in

signaling is often the activation of G proteins. The heter-
otrimeric G protein consists of the subunits α, β, and γ
(Figure 1B). Upon activation, a GDP bound to the α-sub-
unit is exchanged with a GTP, and the G protein dissoci-
ates into different subunits which transmit the signal to
downstream processes. As soon as the GTP is hydrolyzed
to GDP, the subunits can reassociate to form the initial
heterotrimeric G protein.

Small G proteins like Ras, Rho, Rab, Ran, or Arf are either
bound to GDP or GTP and have different activities in both
forms (Figure 1C). Transformation from the GDP state to
the GTP state is catalyzed by the Guanine Exchange Factor
(GEF), while the reverse process is facilitated by a GTPase-
activating protein (GAP), which induces hydrolysis of the
bound GTP [13].

Extracellular signal-regulated kinase (ERK) or mitogen-
activated protein kinase (MAPK) cascades consist of three
or four different proteins that specifically catalyze the
phosphorylation of the subsequent proteins (Figure 1D).
According to their roles, these kinases are called MAP
kinase (MAPK), MAP kinase kinase (MAPKK), and so on.
The dephosphorylation is ensured by phosphatases that
are often less specific, but can also be very specific to cer-
tain targets. In some cases, the members of a signaling cas-
cade form complexes with scaffold proteins. By binding
the kinases, scaffolds can ensure the physical vicinity or
even the correct molecular orientation. Scaffolding can
account for the fact that signaling pathways often appear
to be decoupled although they contain common compo-
nents.

Techniques in mathematical modeling of 
signaling pathways
The purpose of modeling
Since a reliable quantitative model is hard to obtain,
experimental knowledge is often first described with a raw
model, which is then improved based on new experi-
ments. In this way, model development and experimental
design are improved in a synergistic manner. Frequently,
both the model and the objective of the study are also iter-
atively refined (e.g. [14,15]). Although so far, no standard
for the development of pathway models has been estab-
lished, the majority of approaches (e.g. in [16-18])
embarks on the following general strategy: an initial
model is constructed based on pre-existing data such as
concentrations, kinetic parameters, flux measurements,
microscopic images, which may stem from diverse sources
(literature, databases, own measurements). First problems
arise already at this stage: links can be missing or discrep-
ancies between model outcome and biological observa-
tion can arise.  Resolving them requires new experimental
data. The points that are not sufficiently defined in the
network can also be analyzed in a computational
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approach that clarifies which of several alternative model
assumptions may explain the observations. The initial
model is then used to make predictions. These predictions
are tested in new experiments or against new data for dif-

ferent mutant organisms or for different pathway stimula-
tion scenarios. The results allow for a model update and a
second round of iteration.

Building blocksFigure 1
Building blocks. Building blocks or modules of signaling pathways. Despite their diversity, signaling pathways often employ a 
set of common components (modules, motifs, building blocks) including the depicted ones. A) Receptors sense specific ligands 
or stimuli and change their conformation from the susceptible form Rs to the active form Ra, which transfers the signal down-
stream. Cells can fine-tune their excitability by (i) changing the susceptibility of receptors, e.g. switch between Rs and inactive 
form Ri, or (ii) by regulating the number of receptors via production or internalization and degradation. B) G proteins are het-
erotrimers consisting of subunits α, β, and γ. In the ground state, the α-subunit is bound to GDP. The active receptor triggers 
the activation of the G protein by exchanging the GDP with a GTP. The G protein dissociates into its subunits, which transmit 
the signal downstream by binding to other proteins and activating or inhibiting biochemical processes. The α-subunit carries 
the GTP. After GTP hydrolysis, which is a highly regulated process on its own, the subunits can reassociate to form the initial 
heterotrimeric G protein. The Regulator of G protein signaling (RGS) is involved in a larger feedback loop. C) Small G proteins 
switch between GDP-bound or GTP-bound forms with different activities. Conversion from the GDP state to the GTP state is 
catalyzed by a so-called Guanine Exchange Factor (GEF), the reverse process is facilitated by a GTPase-activation protein 
(GAP), which induces hydrolysis of the bound GTP [13]. D) MAPK (mitogen activated kinase) cascades consist of three or four 
different proteins (the kinases) that specifically catalyze the phosphorylation of the subsequent kinases under consumption of 
ATP. In this case, Raf is a MAPKKK, MEK is a MAPKK, and ERK is a MAPK. The number of phosphorylation events on each 
level can differ. Dephosphorylation is exerted by phosphatases (denoted by PP).
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This point is nicely illustrated by the development of cell
cycle models. First simple models were made to study the
emergence of oscillations in cascades of post-translational
modifications with feedback[19]. Since that time,
dynamic models for cell cycle have been developed and
iteratively improved [[20-22]20, 21, 22 and others], now
comprising dozens of variables.

Definition of the system
The most basic decision in model building concerns the
model components: which molecules and interactions
play a role and which of them will be left out? Omitting
certain processes from the models is based on the assump-
tion that they have only a minor influence on the event
under study, that their values remain constant in the
experimental setup, or that they simply cannot be
described with the currently available means. For exam-
ple, the effect of regulated gene expression is usually
neglected in the modeling of metabolic networks
although modelers are certainly aware of production and
degradation of enzymes. But the different time scales of
protein turnover and metabolic reactions justify this sim-
plification in many cases.

On the contrary, the actual architecture of signaling path-
ways often depends on the cell state (developmental state,
cell cycle, previous events). For example the pheromone
receptor in yeast is degraded after stimulation; therefore
the pathway now lacks its first element. Also other varia-
bles besides substance concentrations may play a role:
Upon osmotic stress, the HOG pathway (see below) leads
eventually to the production of glycerol and, thereby, to a
regulation of cell volume and turgor pressure. This means
that it essentially changes the state of the cell and, by
means of the volume changes, the concentration of all
involved components. This is a strong argument for
including the volume changes into the model in order to
understand the relevant regulatory interactions.

Coupling of pathways
Different groups of researchers who are experts in their
field have developed specific pathway models which
appropriately describe the studied phenomena. In order
to build larger networks, it is desirable to integrate those
different models into larger networks that can reflect more
or more complex biological phenomena – as it shall be
exemplified below by Bhalla's models of neuronal signal-
ing pathways.

To integrate pathways into larger models, the develop-
ment of tools for a sensible integration of pathway models
is clearly on the agenda. Important ingredients for cou-
pling of models are (1) the development of standardized
model exchange formats such as SBML [23], (2) the emer-
gence of model databases such as JWS online http://

jjj.biochem.sun.ac.za/database[24], Biomodels http://
www.ebi.ac.uk/biomodels or the Database of Quantita-
tive Cellular Signaling (DOQCS, http://doqcs.ncbs.res.in/
), and (3) quality standards for model description in pub-
lications, such as MIRIAM [25]. As an alternative, it has
been proposed to construct signaling networks more or
less automatically from data stored in databases, e.g. from
interaction maps [26,27]. However, this approach is likely
to miss important biological details: even experts for spe-
cific pathways sometimes start to stumble when they are
asked for the correct sequence of events in the interaction
of proteins – although it is well known that the proteins
do interact, and which protein domains are involved.

Mathematical structure of biochemical network models
Structural models describe the present molecules and
their interactions and possibly the molecule numbers. If
also the dynamics is to be considered, these numbers will
change in time. To describe these changes, modelers can
choose from different types of mathematical models.
Models used for signaling pathways can be loosely
grouped as follows: they can be (i) deterministic (with
defined states in the future) or probabilistic (stochastic
processes), (ii) discrete or continuous with respect to time
and to component abundance (i.e. molecule numbers or
concentrations), and they (iii) may or may not describe
the processes in space. The choice of a model will depend
on system, the available information, and the specific
questions to be studied.

In most models, biochemical reaction systems are
described in a deterministic, continuous manner by rate
equations for the concentrations of substances and com-
plexes. The mathematical representation is a set of ordi-
nary differential equations (ODEs)

where m is the number of biochemical species with the
concentrations ci, r is the number of reactions with the

rates vj, and the quantities nij denote the stoichiometric

coefficients. Depending on experimental information, the
individual reaction rates can be described by very sophis-
ticated kinetic laws. But often, mass action kinetics is

used, where the rate for the reaction  reads

v = A · B · kf - C · kb.

The parameters kf, kb are the rate constants. Especially in
metabolic networks, the traditional Michaelis-Menten
kinetics is used, where the rate for the enzyme-catalyzed
reaction S → P is expressed as

dc dt n v i mi ij j
j

r
/ ( ,.., ),= =

=
∑  

1

1

A B C
k

k

f

b

+ ⎯ →⎯← ⎯⎯
Page 4 of 16
(page number not for citation purposes)

http://jjj.biochem.sun.ac.za/database
http://jjj.biochem.sun.ac.za/database
http://www.ebi.ac.uk/biomodels
http://www.ebi.ac.uk/biomodels
http://doqcs.ncbs.res.in/


BMC Neuroscience 2006, 7(Suppl 1):S10
The quantity Vmax is the maximal rate and KM denotes the
substrate concentration ensuring a half-maximal rate.

In the deterministic framework, spatial distribution of
compounds can be described by distinguishing different
compartments or by describing dynamics in a continuous
space with partial differential equations. Examples for sys-
tems that are discrete with respect to time and values of
variables are Boolean networks [28], Petri nets [29], or cel-
lular automata[30]. In systems with small molecule num-
bers, stochastic effects tend to become relevant, and
individual reaction events have to be simulated, e.g., by
the different algorithms put forward by Gillespie [31-33].
When the particle numbers are high, the results of sto-
chastic simulations are often well approximated by deter-
ministic rate equation models. There is, however, no easy
way to decide in advance whether or not a deterministic
description is justified.

Signaling networks and metabolic networks
Modeling of biochemical reaction networks has gained
much success in the field of metabolic pathways, and
many techniques have been developed for studying meta-
bolic systems (steady state analysis, MCA, stoichiometric
analysis, independent fluxes, conservation relations, flux
balance analysis etc.). Therefore, we may ask for the simi-
larities and the differences between metabolic and signal-
ing pathways, and whether techniques developed for
metabolism also apply to signaling systems. Both metab-
olism and signaling are modeled by a set of biochemical
reactions including binding, dissociation, complex forma-
tion, and transfer of molecule groups. Especially phos-
phorylation and dephosphorylation occur in both cases
(e.g. phosphofructokinase in metabolism or MAP kinases
in signaling). Nevertheless, we also encounter differences,
such as the following:

(i) In metabolism, the amount of enzyme and substrate
often differ by several orders of magnitude (concentra-
tions in the order of nM compared to mM). This is a pre-
condition for the application of Michaelis-Menten
kinetics, which is only justified if the enzyme concentra-
tion is much lower than the substrate concentration
(quasi-steady state assumption suggested by Briggs and
Haldane, 1925 [34]). In signaling pathways, the numbers
of catalyst and substrate molecules are usually in the same
order of magnitude. For example, molecule numbers of
the proteins involved in typical yeast signaling pathways
vary between about several hundreds and several thou-
sands. This is a strong argument for not applying the
Michaelis-Menten approximation, but using mass action

kinetics, at least as long as the detailed kinetics of that spe-
cific reaction is not known. Michaelis-Menten kinetics
underestimate the reaction rate compared to (a) mass
action kinetics for the whole reaction or (b) mass action
kinetics for the individual steps including reversible bind-
ing and product release (which give about the same
results). This may lead to qualitatively different behavior
like the occurrence or absence of oscillations in a MAP
kinase cascade with feedback.

(ii) While metabolic pathways are characterized by a flow
of matter (an atom entering glycolysis at the upper end/
hexokinase may leave it at the lower end/pyruvate
kinase), signaling pathways comprise many closed loops
in which matter flows, e.g., within the G protein cycle or
between the different phosphorylation states of a protein.
The essential function of signaling pathways is the flow of
information, although this statement does not exclude
that the flow of matter in metabolism is also connected to
a flow of information.

(iii) Phosphorylation under consumption of nucleotide
triphosphates (ATP) has a different function. While it
serves as a fuel in metabolism (it essentially increases the
difference in free energy) and speeds up the reactions, it
just marks proteins as different (changes their activity or
binding behavior) in signaling.

(iv) Although metabolism is able to respond to environ-
mental changes, especially nutrition, it is mainly a home-
ostatic process and has a strong constant component. This
is the basis for consideration of steady states in metabo-
lism models. Metabolic control analysis [35,36], elemen-
tary flux modes [37], flux balance analysis [38] and other
common approaches are based on the assumption of a
steady state. Signaling pathways, on the opposite, operate
essentially in a non-static manner: the pathway acts by
state changes. Therefore, the analysis of their steady states
cannot be central, although it may provide information
on the contribution of different components to how such
pathways are switched on or off, i.e. how they are shifted
away from their resting state.

Metabolic control analysis
Metabolic control analysis (MCA, [35,36,39], for an intro-
duction see [40-42]) studies the effect of small parameter
changes on concentrations and fluxes in the steady states
of metabolic systems. The (linearized) influence of a cer-
tain parameter on a certain variable is quantified by
response coefficients or control coefficients, which are
also known as sensitivities. Metabolic control theory has
developed the so-called summation and connectivity the-
orems, which relate the control coefficients to the stoichi-
ometry and the linearized reaction kinetics of the system.
Control coefficients can be used to detect important sys-

v
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tem parameters. This has been exemplified for a model of
the WNT pathway [18], which we will discuss below. To
quantify the robustness of a variable against general
parameter changes, Lee et al [18] introduced a measure for
robustness, ρ = 1/(1 + σ), where σ is the standard devia-
tion of the concentration control coefficients. A high value
of ρ implies robustness, or in other words, a low control
of parameters over that variable. In recent years, MCA has
been extended to cover time-dependent phenomena:
Ingalls and Sauro [43] have proposed time-dependent
response coefficients that describe the influence of param-
eter changes on time series. Besides this, control coeffi-
cients for signal characteristics such as maximal amplitude
or mean signal time of output signals have been defined
[44], and also spatial processes such as diffusion can be
incorporated [45].

Phenomena studied using mathematical models
Besides the modeling of specific biological pathways,
mathematical models have been used to study general
properties of signaling pathways. These studies have also
revealed general design principles that relate the structure,
the dynamics, and the function of pathways. Also simpli-
fied models do not only serve as first attempts when
detailed information on the molecular mechanisms is
missing; they may also help to emphasize and thus clarify
essential features of the functioning of a system, even
when abundant molecular information is available.

Relative importance of kinases and phosphatases
The proper functioning of MAPK pathways depends on a
balance of phosphorylation and dephosphorylation.
Phosphatases counteract the effect of kinases, contribute
to downregulation after pathway stimulation, and they
also keep basal levels low despite activation by noise or
sub-critical inputs. The ratio k/p between kinase activity
(k) and phosphatase activity (p) determines both the basal
level of active MAPK and the final level of MAPK upon
continuous pathway stimulation. If the stimulation is
transient, then k and p influence both amplitude and
duration of the activation. Upon weak stimulation, k
determines the amplitude and p the duration [46]. Upon
strong stimulation these roles are changed, since mass
conservation on each level of the kinase cascade prevents
a stronger increase in the level of activated protein, which
in turn results in prolonged activation [16].

Signal amplification
It has been proposed that signaling cascades can amplify
their signals, and it has been studied how this is actually
achieved [2,47,48]. Amplification means that an input of
a few signaling molecules can lead to a large number of
active output molecules, which of course bears the danger
that also noise is amplified. One way to quantify signal
amplification is to compare the activated and the inactive

state of a pathway. "Inactive" means that the input signal
is shut off except for some inevitable noise. Amplification
can then be defined as the relative increase of the output
signal upon activation, divided by the relative increase of
the input signal. Based on this definition, it was shown
[16] for a simple model of MAP kinase cascades that
amplification depends on the ratio k/p of the rate con-
stants for kinase (k) and phosphatase (p) reactions. How-
ever, also the output level at the poorly activated state
depends on k/p. Hence low k/p leads to high amplification
at low absolute values, while high k/p leads to low ampli-
fication at high basal levels.

If the members of a MAP kinase cascade are bound to a
scaffold protein, we would expect no amplification
because every MAP kinase molecule will activate at most
one MAP kinase molecule of the following level. How-
ever, a little modification of the scaffold mechanism can
allow for amplification, as it is the case in the yeast phe-
romone pathway. Three MAP kinases are bound to a scaf-
fold protein. If the phosphorylated MAPK Fus3 can
dissociate from the complex allowing for a repeated bind-
ing, phosphorylation and release of further Fus3 mole-
cules, then strong amplification can occur.

Also the numbers of protein molecules per cell, as given in
the Yeast GFP Fusion Localization Database [49], suggest
that a certain degree of signal amplification is envisaged in
cellular signaling: their abundance increases from upper
to lower parts of the pathways. For example, in yeast
MAPK pathways the subsequent molecule numbers read:
Ssk2+Ssk22: 274, Pbs2: 2160, Hog1: 6780 (Hog pathway)
and Ste20: 259, Ste11: 736, Ste7: 672, Fus3: 8480 (phe-
romone pathway).

Impact of feedback loops on regulatory properties
The role of feedback loops in signaling cascades has been
discussed in detail in various publications (e.g. [9,50,51]).
Feedback loops can alter the dynamical behavior of a sig-
naling system and may accomplish different functions.

Negative feedback loops usually downregulate a pathway
after successful transmission of the signal. In this way, the
cell prevents sustained pathway activation in cases when
the external signal is still present, but the internal adapta-
tion machinery has already started (e.g. [16,52]). Depend-
ing on the kinetic parameters, negative feedback loops can
also cause oscillations [51]. Positive feedback loops [17]
may amplify the pathway activation such that small stim-
uli can result in pronounced effects. Depending on the
kinetic design of the system they can also result in bista-
bility, thereby ensuring that weak stimuli activate the
pathway only transiently, while strong stimuli may result
in a sustained activation.
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Crosstalk between pathways
The notion of crosstalk implies that signaling pathways
can, to a good approximation, be regarded as almost iso-
lated sets of reactions, which exchange only little informa-
tion.

A number of studies are devoted to the crosstalk between
different pathways [1] and also to the question of how
pathways can avoid crosstalk although they share com-
mon protein species. In the context of modeling, it was
analyzed how pathways using a common intermediate
can pass different signals [53], and how signals from one
pathway modulate the activity of another pathway [2]. As
a quantitative measure of network crosstalk, the number
of non-negative linear combinations of extreme pathways
has been proposed in [3]. Extreme pathways are a concept
from stoichiometric analysis and they describe a set of flux
vectors that completely characterize the steady-state capa-
bilities of the network. Another definition of crosstalk
[54] refers to the relative frequency of cross-interactions,
that is, the number of cross-interactions found divided by
the maximal number of possible cross-interactions.

However, if one regards the multitude of signaling mole-
cules and their possible interactions as one big signaling
system ("signalosome", as put forward in [55]), then the
communication among compounds is the rule and not
the exception. From this point of view, the question of
how to prevent or establish crosstalk is less fundamental
and should be rephrased [56]: What is the biological func-
tion of the communication between parts of the signaling
network?

Models of signaling pathways in various cell types
To illustrate the concepts presented so far, we shall now
present some signaling pathways that have been modeled
quantitatively. According to their different functions, they
show different designs, but they are mainly based on the
same recurrent building blocks introduced above. We will
not cover models for nerve excitation, neuronal firing or
oscillations of the neuronal network as a whole and will
also not refer to the integrate-and-fire model, the Fit-
zHugh-Nagumo model or the Hodgkin-Huxley model.
Instead, we concentrate on models of intracellular path-
ways that transmit their signals via protein-protein inter-
actions or interactions with second messengers.

Stress response pathways in yeast
Yeast cells possess a number of signaling pathways that
enable them to respond to stresses, external nutrients and
pheromone (Figure 2).

Although signal transduction in yeast has been studied
thoroughly, only a few quantitative models have been
published so far [57,58]. A first model of the G protein

activation within the pheromone pathway has been pre-
sented by Yi and colleagues [6]. This model is based on G
protein activities that have been measured using fluores-
cence resonance energy transfer (FRET). It comprises the
production, degradation and activation of the G protein
coupled α-receptor (Ste2), the activity cycle of the G pro-
tein and its regulation by the G protein regulator (RGS)
Sst2 (compare Figure 1).

This model has been adapted and incorporated into a
more comprehensive model of the pheromone pathway
[52], which includes downstream processes of the activa-
tion of Gβγ. As shown in Figure 2, the components of the
MAP kinase cascade bind to the scaffold protein Ste5.
Binding of Ste5 to Gβγ and the MAP KKKK Ste20 brings
Ste20 into the vicinity of Ste11, the MAP KKK, permitting
its activation. Furthermore, a cycle of binding, phosphor-
ylation and release of the MAPK Fus3 is considered. Phos-
phorylated Fus3 triggers the following events including
the activation of the transcription factor Ste12, the activa-
tion of the cell cycle regulator Far1 and the activation of
the RGS Sst2.

The pheromone pathway model includes several feedback
loops that help to downregulate the pathway after success-
ful signal transduction. First, the activation of Fus3 leads
to a repeated phosphorylation of more Fus3 molecules.
Secondly, the activation of Sst2 itself depends on the acti-
vation of Fus3. It accelerates the closing of the G protein
cycle by enhancing the rate of hydrolysis of Gα-bound
GTP. Yi et al. [6] studied strains with either constitutively
active or inactive Sst2. Third, the transcription factor Ste12
enhances the expression of the protease Bar1, which is
exported, cleaves the α-factor, and thereby counteracts the
input signal. Hence, the pathway design ensures the long-
term downregulation of the pathway after successful acti-
vation of target processes.

The response of yeast to osmotic stress has been described
by a model [16] that comprises the high osmolarity glyc-
erol (HOG) pathway, transcriptional regulation, the effect
on metabolism and the change in the production of glyc-
erol and an additional model describing regulation of vol-
ume and osmotic pressure (see Figure 2). The HOG
pathway consists of two input branches, the Sln1 branch
and the Sho1 branch (which is not considered in the
model). The receptor Sln1 is a membrane protein that
senses the osmotic changes. Under normal conditions, it
is continuously phosphorylated and transmits its phos-
phate group to Ypd1, which in turn passes it on to Ssk1.
In this way, Ssk1 is kept phosphorylated and inactive. This
module consisting of Sln1, Ypd1, and Ssk1 is a so-called
phosphorelay system. Upon osmotic stress, phosphoryla-
tion of Sln1 is interrupted and Ssk1 switches to a non-
phosphorylated, active state. In this form, it triggers the
Page 7 of 16
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HOG MAP kinase cascade, which involves the redundant
proteins Ssk2 and Ssk22 as well as Pbs2 and Hog1. Phos-
phorylated Hog1 can enter the nucleus and regulate the
transcription of a series of genes.

During osmostress, the pathway is downregulated despite
sustained external activation. This cellular response could
not be explained by modeling the signaling pathway in
isolation. It was argued that the turgor pressure instead of
the external salt concentration is sensed by the cell. The
turgor pressure is partially regulated by glycerol. Active
Hog1 activates the expression of genes coding for enzymes
that are involved in the production of glycerol.

Model simulations have revealed details of the signaling
process, enlightening the role of the glycerol channel Fps1
in glycerol accumulation, and the feedback control
exerted by protein phosphatases in the MAP kinase path-
way. It turns out that Fps1 is responsible for the immedi-
ate control on the internal glycerol concentration, while
the stimulated expression of GPD1 and GPP2 and the
resulting increased glycerol production preserves a high
level of glycerol during growth in high osmolarity. The
model implies that the HOG pathway is shut off by glyc-
erol accumulation, cell re-swelling, and turgor increase
rather than by enhanced expression of phosphatases. This
result has been confirmed by the experimental fact that

Signaling Pathways in YeastFigure 2
Signaling Pathways in Yeast. Overview of signaling pathways in the baker's yeast S. cerevisiae. From left to right: HOG path-
way activated by osmotic shock, pheromone pathway activated by pheromones secreted by cells of the opposite mating type, 
pseudohyphal growth pathway stimulated by starvation conditions, and the glucose sensing pathway. In each pathway, the acti-
vated receptor activates a cascade of intracellular processes including complex formation, phosphorylation and dephosphoryla-
tion, and transport steps. Most of these pathways comprise a MAP kinase cascade and transcription factors that regulate the 
expression of target genes. Besides this, the signaling pathways can directly interact with cell cycle progression and adaptation 
of metabolism.
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the pathway can be fully reactivated by a second osmotic
stress.

Jak-Stat pathway
Jak-Stat pathways play an important role in regulating
immune responses and cellular homeostasis in human
health and disease [59,60]. They are activated by
cytokines, a large family of extracellular ligands. The fam-
ily of structurally and functionally conserved proteins
involves four Jak-type receptors and seven Stats ("signal
transducer and activator of transcription"). Figure 3 shows
the structure of a Jak-Stat pathway comprising the Jak-type
receptor EpoR and the Stat5.

In a mathematical model of the Jak-Stat pathway pre-
sented by Swamaye et al. [7], the dynamics has been
described with mass action kinetics for all steps. Stat5
molecules have to reside in the nucleus for a certain time:
this has been modeled by a fixed delay in the differential
equations. The model showed that recycling of Stat5 mol-
ecules is an important detail of the activation cycle and
necessary to explain experimental data. The Jak-Stat sign-
aling system in human B-cells was described in a network-
based approach [61], and the concept of extreme path-
ways [62] has been used to study emergent systemic prop-
erties of the Jak-Stat signaling network, such as crosstalk
between pathways, redundancy of signaling inputs and
outputs, and correlated responses.

EGF receptor signal transduction
The epidermal growth factor (EGF) receptor belongs to
the tyrosine kinase family of receptors, which regulate cell
growth, survival, proliferation, and differentiation. Bind-
ing of EGF to the extracellular domain of the EGF receptor
induces receptor dimerization and autophosphorylation
of intracellular domains. A multitude of signaling pro-
teins are then recruited to the activated receptors through
phosphotyrosine-specific recognition motifs. The activa-
tion of the small G protein Ras is initiated by two main
pathways, one of which depends on Shc, while the other
one does not. Active Ras-GTP stimulates the activation of
the MAP kinase cascade involving the kinases Raf, MEK,
and ERK1/2. Activated ERK phosphorylates and regulates
several cellular proteins and nuclear transcription factors

The EGF pathway [63] was modeled to quantify short
term signaling and to test the influence of parameter
choice and signaling strength. Schoeberl et al. [5] devel-
oped a comprehensive model of the EGF receptor-acti-
vated MAP-kinase cascade, which contains 94
components. In the model, activated EGR receptor was
internalized, and the effect of this feature on signaling and
ERK phosphorylation was studied. It could be shown that
internalization of receptors contributes little during
strong stimulation, but has a strong effect on overall

response by retaining signaling capacity at weak stimula-
tion.

WNT/β-catenin pathway
WNT proteins are important mediators of intercellular
communication in many cell types, and signaling by
members of the WNT family is also crucial for the normal
embryonic development of the nervous system. In the
nervous system, WNT signaling regulates neuronal con-
nectivity by controlling axon pathfinding, axon remode-
ling, dendrite morphogenesis, and synapse formation. A
recent overview on the WNT pathways can be found in
[64] and a schematic representation is given in Figure 4.

WNTs are secreted glycoproteins with an unusual post-
translational modification, i. e. palmitoylation at a con-
served cysteine, which is essential for their function. The
WNT pathway looks as follows: WNT molecules bind to
receptors called "Frizzled" (FZ), which are seven-pass
transmembrane proteins. The WNT-FZ complex then acti-
vates Dishevelled (DVL), a cytoplasmatic scaffold protein
that brings together components of the pathway for effi-
cient transduction. Signaling through FZ involves the
receptor-related proteins LRP5 or LRP6 and requires G-
protein activation. WNT can also signal through the tyro-
sine kinase-related receptor RYK, which interacts with FZ
and DVL. Downstream of DVL, the WNT pathway
diverges into at least three branches: the canonical or
WNT/β-catenin pathway, the planar cell polarity (PCP)
pathway and the WNT/calcium pathway. These pathways
again branch to give a pattern of responses.

The WNT/β-catenin pathway has been analyzed in a com-
bined experimental and theoretical study [18] devoted to
the understanding of tumor suppression and oncogenec-
ity. The system was modeled by a differential equation
model: the kinetics of individual reaction steps are
described as simply as possible by either constant rates
(for synthesis steps) or mass action kinetics, and conserva-
tion relations are considered for DVL, TCF, GSK3β, and
APC. The modeling revealed that the two scaffold proteins
axin and APC promote the formation of degradation com-
plexes in very different ways. The model also explains the
importance of axin degradation in amplifying and sharp-
ening the Wnt signal. Moreover, it shows that the depend-
ence of axin degradation on APC is an essential part of a
regulatory loop that prevents the accumulation of β-cat-
enin at low APC concentrations.

Once a system has been modeled, a sensitivity analysis
can reveal the effect of parameter changes. In the WNT
model, the control of the individual steps over the con-
centrations of β-catenin and axin has been quantified by
means of control coefficients. Strong negative control on
the total β-catenin concentration is exerted by the reac-
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tions that participate in the assembly of the destruction
complex APC/axin/GSK3β, while strong positive control
is found in reactions involved in the disassembly of the
destruction complex APC/axin/GSK3β and in the dissoci-
ation of β-catenin from the destruction complex. The
effects of parameter changes on axin were in general
opposite to those on β-catenin.

Signaling pathway models for neurons
Besides their usual role in controlling development (e.g.,
the growth of axons and dendrites), signaling pathways in
nerve cells are also involved in synaptic plasticity, i.e. the
variability of the intensity of a signal transmitted through
a synapse. Working memory and long-term memory stor-
age in the brain is implemented by short-term and long-

Jak-Stat PathwaysFigure 3
Jak-Stat Pathways. Jak-Stat pathways entail the receptor Janus kinase (Jak) and the signal transducer and activator of tran-
scription (Stat). Stat molecules are inactive as monomers, and their activation involves phosphorylation and dimerization. The 
binding of the ligand (here the hormone Epo) to the receptor (EpoR) results in phosphorylation of Jak and of the cytoplasmatic 
domain of EpoR. Monomeric Stat5 is recruited to the phosphorylated and thereby activated receptor, EpoRA. (1) Upon recep-
tor recruitment, monomeric Stat5 is tyrosine-phosphorylated. It dimerizes (2) and migrates to the nucleus (3), where it binds 
to the promoter of target genes. After dissociation (4), it is dephosphorylated and exported to the cytoplasm.
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term changes in the strength of synapses. An important
phenomenon is the spike-time dependent plasticity
(STDP): a postsynaptic spike right after transmitter release
will strengthen the respective synapses, (long-term poten-

tiation, LTP), while a spike occurring before activation
will weaken them (long-term depression, LTD). Practi-
cally, the synapse strength is tuned by modification, inser-
tion and removal of receptors, and by remodeling of the

WNT PathwaysFigure 4
WNT Pathways. The extracellular signaling molecule WNT activates three pathways: (1) Early cell fate decisions are con-
trolled via the canonical pathway (middle): it comprises the regulation of gene expression by inducing β-catenin-mediated tran-
scriptional activation. Interaction of WNT with the transmembrane receptor frizzled (FZ) activates dishevelled (DVL), which 
induces the disassembly of a complex consisting of axin, adenomatosis polysis coli (APC), glycogen synthase kinase 3β (GSK3β) 
and β-catenin. In non-stimulated cells, GSK3β phosphorylates β-catenin, thereby triggering its degradation. Activitation of the 
pathway effectively increases the levels of β-catenin in the cyctoplasm, which is then translocated to the nucleus. Here it it 
forms the β-catenin-T-cell specific transcription factor complex that activates the transcription of target genes. (2) In the planar 
cell polarity pathway (left), FZ functions through G-proteins to activate DVL, which thereupon signals to Rho GTPases (Rho or 
Rac or both). Activated Ras signals through the c-Jun amino (N)-terminal kinase (JNK). Activation of Rho-GTPases induces 
changes in the cytoskeleton. In neurons, this pathway is involved in dendritic arborization. (3) In the WNT/calcium pathway 
(right), activation of DVL activates protein kinase C (PKC) and induces the release of intracellular calcium, which activates a 
calcium/calmodulin-dependent protein kinase II (CaMKII).
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actin cytoskeleton in the spine. These processes are regu-
lated by a plethora of biochemical signaling pathways in
the postsynaptic spines of excitatory synapses, which are
controlled by the activity of the synapse and by hormonal
influences. Two main types of signal transmission con-
tribute to synaptic plasticity: (i) cascades of covalent mod-
ifications of existing synaptic proteins (typically protein
phosphorylation), resulting in altered synaptic function
and (ii) concentration changes of second messengers,
which regulate gene transcription and interfere with the
protein modification cascades. One of them is the calcium
ion, Ca2+, which plays an important role in spike-time
dependent plasticity: The precise relative timing of trans-
mitter release and postsynaptic spike is sensed by the N-
methyl-D-aspartate-type glutamate receptor (NMDAR).
This receptor allows influx of Ca2+ into the spine when it
binds glutamate and the membrane is depolarized at the
same time.

Calcium-calmodulin models
Bursts of activity in neurons are generated by voltage- and
time-dependent ion fluxes, which result from a dynamic
interplay among ion channels, second messenger path-
ways and intracellular Ca2+ concentrations. This interplay
is tuned by neuromodulators and synaptic inputs. This
complex intrinsic and extrinsic modulation of pacemaker
activity exerts a dynamic effect on the activity of the sign-
aling network [65].

Calcium spikes are thought to encode information mainly
by their frequency, not by their amplitude. It is an inter-
esting question how non-excitable cells decode these sig-
nals into a frequency-dependent cellular response. This
question was tackled by Goldbeter and coworkers [66-68]
by computational modeling. Calcium interacts with the
calcium/calmodulin-dependent protein kinase type II
(CaM kinase II), which is a ubiquitous, multifunctional
enzyme. Protein phosphorylation was suggested [66,69]
as a possible mechanism for frequency decoding of Ca2+

oscillations. A general model for frequency decoding of
Ca2+ oscillations [66] takes into account a phosphoryla-
tion-dephosphorylation cycle with a Ca2+-activated kinase
and a Ca2+-independent phosphatase (Figure 5). The role
of CaMKII in decoding Ca2+ oscillations has been studied
by theoretical models, which have predicted that the level
of activity of CaMKII increases with the frequency of Ca2+

oscillations due to a sort of time integration of the oscilla-
tory signal [69-73].

Combined pathway models for signaling in neuronal cells
In addition to synaptically mediated signals that are based
on changes in membrane potential, neurons generate and
receive many types of signals that involve biochemical
pathways, some of which are independent of voltage.
Interactions between such biochemical pathways involv-

ing positive and negative feedback loops lead to emergent
system properties, i.e. properties that rely not only on the
individual properties of proteins but on their connec-
tions, most notably bistability and oscillations. Due to
this interdependence, the involvement of biochemical
pathways in information processing increases the compu-
tational and integrative capacity of a neuron.

Hence an important issue in modeling of signaling sys-
tems is the integration of pathways. In a series of excellent
papers, Bhalla and coworkers developed computational
models for different signaling pathways in neurons. [e.g.
[17], e.g. [74-76]]. They also integrated several individual
pathways into networks. First, individual pathways were
modeled by sets of differential equations and their behav-
ior was tested against experimental data. In the models,
the individual reaction steps were described by mass
action kinetics, while enzyme-catalyzed reactions were
described by a two-step scheme in which each individual
step is covered by mass action. The aim of the study was
to examine emergent properties of the coupled signaling
network: two or three pathway models were iteratively
combined to more complex models and their behavior
was tested again against published data. Figure 6 shows
the pathways and how they were linked.

Besides aiming at agreement with experimental data, the
combined models could explain several regulatory fea-
tures of the network: The downregulation of the MAPK
activity after initial stimulation (by a constant EGF stimu-
lation) stems from a combined effect of EGF receptor
internalization, MAPK phosphorylation and inactivation
of SoS. Moreover, a positive feedback loop contributes to
bistable behavior, i.e. depending on the value of the ini-
tial concentrations of compounds or on the choice of
stimulation scenarios, different steady states of the system
will be reached. Specifically, the impact of amplitude and
duration of the EGF stimulation on MAPK activation was
studied. Weak or short-term stimulation results in tran-
sient activation, while only strong long-term activation
provokes sustained MAPK activation. This can be tested in
time course plots, where concentrations are plotted versus
time. More elegantly, bistability is analysed using a phase
plane plot showing the nullclines of the two players in the
feedback loop, PKC and MAPK. Two of the three steady
states are stable, pointing to bistability. The unstable
steady state marks the threshold between both types of
stimulation (or, in mathematical terms, marks the separa-
trix distinguishing the basins of attraction for the two sta-
ble steady states).

In [17], Bhalla et al. also tested the influence of phos-
phatases on the MAPK activation. Simulating a phos-
phatase that is active in a defined period at a defined level,
again only strong, long lasting action of the phosphatase
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was found to downregulate MAPK, while weak or short
phosphatase activity was not sufficient. Hence, it was
claimed that small fluctuations will keep the output of
such systems unaffected.

It was found that the integrated network shows emergent
properties that the individual pathways do not possess,
like extended signal duration, activation of feedback
loops, thresholds for biological effects, or a multitude of
signal outputs

Evolutionary design and input signals of signaling 
pathways
The application of optimality principles can shed light on
the design of biochemical networks and on their evolu-
tionary development. Different processes in molecular
biology have been studied in terms of optimality, such as
the distribution of phosphorylation steps in glycolysis
based on flux maximization or the temporal order of gene
expression in biosynthetic pathways based on minimal
transition time [77-81].

Calcium-calmodulin networkFigure 5
Calcium-calmodulin network. Ca2+-signaling is mediated through several Ca2+-binding proteins, including calmodulin 
(CaM) and protein kinase C (PKC). The activity of N-methyl-d-aspartate (NMDA) receptors or voltage-sensitive Ca2+ channels 
leads to an increase in intracellular Ca2+, which triggers a release of calmodulin that was previously bound to neuromodulin or 
neurogranin. Depending on Ca2+, CaM modulates the activity of several key signaling molecules that are crucial for synaptic 
plasticity including adenylyl cyclases (AC), protein kinases, calcineurin, nitric oxide synthase, Ca2+-channels, ATP-dependent 
Ca2+-pumps, and the CaM-dependent protein kinases (CaMKII). CaM has four Ca2+ binding sites and in the presence of CaM 
binding protein, it shows heterotropic positive cooperativity for Ca2+. This enables that CaM-regulated AC and cyclic nucle-
otide phosphodiesterases have different Ca2+-sensitivities, and that CaM-stimulated phosphatase calcineurin has greater sensi-
tivity to Ca2+ than CaMKII.
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From an engineer's point of view, signaling pathways have
evolved to perform tasks like signal processing, filtering,
pattern recognition, and discrimination of time series. It
can be insightful to ask: "How would an engineer have
designed a pathway with a given task?", but this question
often seems to be perpendicular to biology. First, biologi-
cal systems have evolved step by step, by adding little
modifications to the composition already acquired. Sec-
ondly, signaling pathways usually do not execute a single
stereotypic task, but have to ensure survival in an unstable
environment with a multitude of demands. For instance,
one may doubt that biological signaling pathways resem-
ble simple on/off switches or tunable elements designed

by engineers: Their architecture is much more diverse and
flexible. Papin et al. [3] have pointed out that, due to alter-
native splicing and posttranslational modifications, the
potential number of different signaling proteins can be
enormous.

Understanding the evolutionary design of signaling path-
ways work is also hampered by an experimental fact:
important information about the physical design of path-
ways is obtained from analysis of mutant, artificially
altered organisms or strong stress signals. In in vivo exper-
iments, cells are typically stressed with a high amount of
a specific stressor applied for long times. For example, the

Signaling network in neuronsFigure 6
Signaling network in neurons Schematic overview of signaling pathway modules in neuronal cells (redrawn from Bhalla 
[82]). Abbreviations: RTK: receptor tyrosine kinase; mGluR: metabotropic glutamate recptor; GPCR: G-protein coupled 
receptor; NMDAR: N-methyl D-aspartate Receptor; Gq: G-protein type q; Gsα: G-protein type s; PLCβ: phospholipase C β; 
PLCγ: phospholipase C γ; IP3: inositol trisphosphate; DAG: diacylglycerol; Sos/GEF: Son of Sevenless/guanine nucleotide 
exchange factor; Ca2+ : Calcium; PKC: protein kinase C; AC: adenylyl cyclase; PDE: phosphodiesterase; CaM: calmodulin; CaM-
KII: calcium calmodulin kinase type II; cAMP: cyclic adenosine monophosphate; CaN: calcineurin; AA: arachidonic acid; PLA2: 
phospholipase A2; MAPK: mitogen activated protein kinase; MKP-1: MAP-Kinase phosphatase type 1; PKA: protein kinase A; 
PP1: protein phosphatase type 1.
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pheromone pathway in yeast cells responds to the phe-
romone α-factor by changes of molecular activation
states, which should occur within a few minutes. Measure-
ments every 30 min (as frequently presented) would miss
relevant events in pathway activation and downregula-
tion. The subsequent directed formation of a shmoo tip
necessitates gradients of the external stimulus. This behav-
ior will certainly not be observable if yeast cells are put for
two hours in an environment with an isotropic distribu-
tion of α-factor.

Laboratory conditions, in general, do not mirror the natu-
ral environment that cells have faced during evolution
and for which they have evolved the specific pathway.
Therefore, the design of the pathways will not appear opti-
mal in the experimental setting. Moreover, if the experi-
ments do not reveal some important modes of behavior,
they provide less useful information for fitting and vali-
dating the models.

Obviously, it is easier to formulate demands from the per-
spective of a dry lab than fulfilling them in a wet lab. Nev-
ertheless, it seems to be necessary to test more situations
that mimic realistic stress conditions in order to learn
which mechanisms cells have evolved to cope with their
normal environment. The need to understand signal
transduction and cellular regulation and to apply the find-
ings in biotechnology and health care will focus future
research to conditions as close as possible to natural envi-
ronment. Especially under the umbrella of systems biol-
ogy, experimentalists and modelers from different
disciplines work closely together to exchange experience,
knowledge and awareness of the requirements of each
other's approach.
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