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Abstract
Background: Epidemiological studies have associated estrogen replacement therapy with a lower
risk of developing Alzheimer's disease, but a higher risk of developing breast cancer and certain
cardiovascular disorders. The neuroprotective effect of estrogen prompted us to determine
potential therapeutic impact of soy-derived estrogenic compounds. Transgenic C. elegans, that
express human beta amyloid (Aβ), were fed with soy derived isoflavones genistein, daidzein and
glycitein (100 µg/ml) and then examined for Aβ-induced paralysis and the levels of reactive oxygen
species.

Results: Among the three compounds tested, only glycitein alleviated Aβ expression-induced
paralysis in the transgenic C. elegans. This activity of glycitein correlated with a reduced level of
hydrogen peroxide in the transgenic C. elegans. In vitro scavenging effects of glycitein on three types
of reactive oxygen species confirmed its antioxidant properties. Furthermore, the transgenic C.
elegans fed with glycitein exhibited reduced formation of β amyloid.

Conclusion: These findings suggest that a specific soy isoflavone glycitein may suppress Aβ toxicity
through combined antioxidative activity and inhibition of Aβ deposition, thus may have therapeutic
potential for prevention of Aβ associated neurodegenerative disorders.

Background
Estrogen, a natural steroid long associated with effects on
the female reproductive system, also plays a role in the
central nervous system (CNS) through binding estrogen
receptors located in the brain [1,2]. It has been demon-

strated that estrogen has neuroprotective and neuro-
trophic properties [1-9]. Epidemiological studies suggest
that post-menopausal women using Estrogen Replace-
ment Therapy (ERT) have a decreased risk of developing
dementia [10-12]. However, the beneficial effect of ERT
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on dementia associated with Alzheimer's disease (AD) is
yet inconclusive [13-15]. Although ERT alleviates the
symptoms associated with menopause and has positive
effects on bones, ERT in post-menopausal women has
been linked to a higher incidence of uterine and breast
cancer. Consequently, the Selective Estrogen Receptor
Modulators (SERMs) compounds that exert tissue specific
estrogenic effects may provide the benefits of ERT without
the risks. A group of natural SERMs are the soy-derived
phytoestrogens, which are structurally similar to estrogen
[16], and may serve as an alternative to ERT [17-19].

Soybeans contain a large amount of isoflavones, includ-
ing genistein (4', 5'7-trihydroxyisoflavone), daidzein (4',
7-dihydroxyisoflavone), glycitein (6-methoxydaidzein)
and their glycosides [20]. Experimental evidence suggests
that soy isoflavones possess many properties including
estrogenic [16], antioxidant [21] hypocholesterolemic
[22], and inhibition of cell proliferation and DNA synthe-
sis [23,24]. Phytoestrogens exert estrogen agonist and
antagonist characteristics [17], in part because of differen-
tial binding affinities for the estrogen receptor (ER) iso-
forms; with higher affinity for ERβ than for ERα. Areas of
the brain responsible for cognitive function and suscepti-
ble to AD (basal forebrain, hippocampus, cerebral cortex),
express higher levels of ERβ compared to ERα [25]. Thus,
interest in these compounds has grown because they
could be used as SERMs, to delay or prevent the cognitive
decline associated with AD [3,26] without increasing the
risk of developing cancer [27].

AD is widely recognized as a serious public health prob-
lem [28]. The clinical symptoms of AD begin with mem-
ory impairment that eventually progresses to dementia, a
process postulated to be the consequence of selective
degeneration of nerve cells in those brain regions critical
for memory, cognitive performance and personality [29].
AD is characterized by the presence of amyloid beta pep-
tide (Aβ1–42) aggregation and increased oxidative stress,
both causing neuronal injury and death [30]. An "amy-
loid cascade" hypothesis states that accumulation of Aβ
deposition initiates a series of downstream neurotoxic
events, which result in neuronal dysfunction and death
[31]. The strongest evidence supporting this hypothesis
comes from molecular genetic studies. Patients with
Down's Syndrome, a disease related to an extra copy of
chromosome 21 containing the APP gene, develop AD
with the formation of Aβ deposits, an early sign of brain
lesion [32]. All familiar forms of AD (FAD)-linked muta-
tions, in the APP gene or two presenilin genes (PS1 and
PS2), result in increased production of Aβ42, which is the
more amyloidogenic form [33]. Transgenic mice overex-
pressing the mutant APP develop Aβ-containing amyloid
plaques similar to those found in AD. Furthermore,
inducing toxicity and cognitive dysfunction by introduc-

ing Aβ into organisms that do not have endogenous Aβ
[34, 56] provided "gain of function" evidence for the
"amyloid hypothesis". In addition, other structure lesions
including neurofibrillary tangles and AproE might con-
tribute to an imbalance between Aβ production and clear-
ance [31]. Therefore, modulation of Aβ production and
clearance in the brain is one approach for treatment of
AD.

In order to understand the neuroprotective mechanism of
phytoestrogens, we performed several experiments using a
transgenic Caenorhabditis elegans model expressing the
human amyloid-beta peptide (Aβ1–42). The transgenic C.
elegans exhibits β amyloid fluorescence staining similar to
those observed in the human brain [34], along with a con-
comitant progressive paralysis phenotype [35]. Results of
these experiments suggest that the neuroprotective effect
of phytoestrogens is, at least in part, due to its antioxida-
tive activity.

Results
1. Glycitein alleviates Aβ-induced paralysis in the 
transgenic C. elegans
A relationship between the onset of Aβ expression and
paralysis behavior has been established in the tempera-
ture-inducible transgenic C. elegans strain CL4176 [35].
We first conducted the paralysis assay using this strain to
determine the effects of the isoflavones on Aβ-induced
toxicity in the organism. We have observed in an inde-
pendent study that the same transgenic C. elegans fed with
Ginkgo biloba extract EGb 761, known for its antioxidant
properties and beneficial effect for dementia, exhibited a
delayed paralysis at the concentration ranging from 10 to
500 µg/ml, and this effect was not dose-dependent (data
not shown). Age-synchronized C. elegans (CL4176, 100
worms/group) were fed with daidzein, glycitein, genistein
or vehicle for 48 h prior to temperature up shift and then
scored for paralysis. Figure 1A is a time course of a paraly-
sis assay comparing a transgenic control strain CL1175,
which does not express Aβ, with the Aβ-expressing strain
CL4176 to demonstrate the specificity of Aβ-expression
induced paralysis. Figure 1B and 1C represent paralysis in
four groups of C. elegans CL4176 fed with one of the three
different isoflavones (100 µg/ml) or vehicle. Apparently,
Aβ-induced paralysis was delayed in worms fed with gly-
citein (Fig. 1B, filled circle compared with open squares, n
= 3 assays, 100 worms/assay). Genistein, known to have
more estrogenic activity than diadzein or glycitein [16],
did not affect Aβ-induced paralysis in the nematode CL
4176 at the concentration applied (Fig. 1B filed squares, n
= 3 assays, 100 worms/assay). The Aβ-induced paralysis
was moderately accelerated at the end of the assay in the
CL4176 worms fed with daidzein (Fig. 1B filled triangles,
n = 3 assays, 100 worms/assay). Figure 1C shows a statis-
tical analysis of the paralysis assays displayed in Fig. 1B.
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We define PT50 as time duration at which 50% worms
were paralyzed from 30 hrs after up shift of temperature
to 23°C. Statistically, a significant delay of Aβ-induced
paralysis was only observed in the worms fed with gly-
citein (Fig. 1C, Control, PT50 = 2.6 ± 0.08 h vs. Glycitein,
PT50 = 3.3 ± 0.25 h. p = 0.036; Daidzein, PT50 = 2.5 ± 0.10
h, p = 0.46; Genistein, PT50 = 2.6 ± 0.15 h. p = 0.76; n = 3
assays each drug, 40 worms in each assay group).
Although Daidzein accelerated paralysis at the end point,
PT50 did not indicate significant difference (Fig 1C) com-
pared with that of the controls. It is known that the effec-
tive concentration for genistein to activate the estrogen
receptor and tyrosine kinases is much lower (nM). Differ-
ential concentration effects of genistein might contribute
to protection against Aβ toxicity/paralysis. Thus, we con-
ducted experiments using genistein at two lower doses (10
µg/ml and 0.1 µg/ml). Aβ-induced paralysis was not
affected in the worms fed with either of the two concen-
trations (data not shown), supporting the view that the
effect of glycitein is specific.

To determine the overall effect of the isoflavones on the
behavioral of the C. elegans, we conducted oxidative stress
sensitivity assay and life span assay. We found that the C.
elegans fed with glycitein were more resistant toward an
oxidative stressor Juglone than the worms fed with daid-
zein and genistein (data not shown). However, the maxi-
mum life span was not affected in the C. elegans CL2006
fed with glycitein compared with untreated control
worms (data not shown).

2. Glycitein attenuates levels of H2O2 in the Aβ-expressing 
C. elegans & in vitro
Given that soy isoflavones are potent antioxidants, we
determined whether the antioxidative properties of the
isoflovones might contribute to protection against Aβ-tox-
icity. Previously, we established an in vivo assay for the
measurement of intracellular H2O2-associated ROS in C.
elegans [36]. The transgenic C. elegans were fed with or
without the isoflavones, prior to induction of Aβ-expres-
sion, followed by measurement of the levels of H2O2 in
the organism. Figure 2A demonstrates that the levels of
ROS in the C. elegans CL2006 fed with glycitein for 36 h
were reduced (control 100 ± 23%, glycitein 68.9 ± 7 %, n
= 3, p = 0.05). Although genistein increased the levels of
ROS compared with the untreated controls (Ctrl 100 ± 23
%, genistein 126.1 ± 18 %, n = 3, p = 0.28 total 300 worms
in each group), it is not statistically significant. Daidzein
did not affect Aβ-induced elevation of ROS (Ctrl 100 ±
23%, daidzein 104.4 ± 6%, n = 6, p = 0.74). These results
suggest the decreased Aβ toxicity by glycitein might be, in
part, a consequence of its antioxidative action.

To confirm the scavenging effect of glycitein on different
species of oxidative free radicals in vitro, we first measured

Paralysis assays in the transgnic C. elegansFigure 1
Paralysis assays in the transgnic C. elegans. A. Time course of 
paralysis in the transgenic strain CL4176 and the control 
strain CL1175. B. Paralysis assay in C. elegans CL4176 fed 
with different isoflavones. Synchronized eggs were main-
tained at 16°C for 38 h, on the 35 × 10 mm culture plates 
(~100 eggs/plate) containing vehicle (control), daidzein, gly-
citein, or genistein (100 µg/ml), followed by up-shifting the 
temperature to 23°C to induce the transgene expression. 
The paralysis was scored at 60 min intervals. Data are 
expressed as percentage of non-paralyzed worms from three 
independent assays of 100 worms in each experiment. C. 
The paralysis assays were quantitated for mean time duration 
at which 50% worms were paralyzed from 30 hrs after up 
shift temperature to 23°C (PT50). P values were obtained 
from 3 independent assays for the worms fed with different 
drugs each paired with untreated controls. Total 100 worms 
were used in each assay.
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Scavenging effect of glycitein in the transgenic C. elegans and in vitroFigure 2
Scavenging effect of glycitein in the transgenic C. elegans and in vitro. A. H2O2 level in transgenic C. elegans CL4176 fed with dif-
ferent isoflavones. C. elegans strain CL4176 was maintained at 16°C for 38 h and then temperature up-shifted to 23°C for 48 h, 
followed by measurement of H2O2 (DCF assay described in methods). CL4176 worms were fed vehicle (Ctrl), 100 µg/ml daid-
zein, genistein or glycitein from 1 day of age until 3 days of age. At least 60 worms from each group were analyzed for levels of 
H2O2. Results are expressed as a percentage of fluorescence (%DCF) relative to control. B. Scavenging effect of glycitein on 
hydroxyl radicals in vitro. The ESR conditions: X-band, 100 kHz modulation with amplitude 1 G, microwave power 10 mW, 
central magnetic field 3,250 G, sweep width 200 G, temperature 20°C. Inset: ESR spectrum of DMPO-OH generated from 
Fenton reaction and trapped by DMPO. C. Scavenging effect of glycitein on superoxide radicals in the system. The ESR condi-
tions are the same as in Fig. 3B. Inset: ESR spectrum of DMPO-OOH generated from Xanthine/xanthine oxidase and trapped 
by DMPO; D. Scavenging effect of Soy isoflavone glycitein on .CH3 free radicals in the in vitro system. Inset: ESR spectrum of 
CH3-tNB generated from the oxidation of DMSO by ONOO-and trapped by tNB.
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its effect on hydroxyl radicals. The hydroxyl free radicals
were generated from Fenton reaction (H2O2 3%, FeSO4
0.1 mM and tapped by DMPO (0.1 mol/l). A spectrum
with 4 lines and 1:2:2:1 intensity (g = 2.0045, aN = aH =
14.9 G) were obtained (Fig. 2B). Figure 2B demonstrates
the signal intensity decrease with different concentrations
of the soy isoflavone glycitein added into this system. The
soy isoflavone glycitein appears to have very strong scav-
enging effects on hydroxyl radical generated from Fenton
reaction (IC50 = 0.035 mg/ml).

We then determined the scavenging effect of glycitein on
superoxide free radicals. The superoxide free radicals were
generated from xanthine/xanthine oxidase and trapped by
DMPO. A signal with 12 lines (aN = 14.2 G, aH

β = 11.2 G,
aH

γ = 1.3 G) was obtained (Fig. 2C), and it was decreased
with addition of glycitein as shown in Fig. 2C. Apparently,
soy isoflavone glycitein has moderate scavenging effect on
superoxide free radicals generated from the reaction of
xanthine/xanthine oxidase (IC50 = 2 mg/ml).

The reaction of NO with superoxide free radicals is very
fast (6.4 × 109mol/L-1s-1) and forms peroxynitrite
(ONOO-). In alkaline solution, it is stable but has a pKa
of 6.6 at 0°C and decays rapidly once protonated, to
hydroxyl radical-like species and NO2, which can oxidize
sulfhydryls and membrane lipid causing cell toxicity and
some diseases. To determine the scavenging effects of the
soy isoflavone glycitein on ONOO-, the methyl free radi-
cal was generated from the oxidation of DMSO by
ONOO- and trapped by tNB and a spectrum with 12 lines
(aN = 17.2 G, aH = 14.2 G) (Zhao et al. 1996) was obtained
(Fig. 2D). A strong scavenging effect of glycitein on
ONOO- (IC50 = 0.13 mg/ml) was found as shown in Fig.
2D.

3. β amyloid were significantly reduced in transgenic C. 
elegans fed with glycitein
The modified "amyloid hypothesis" states that Aβ-
induced oxidative stress may speed up β amyloid forma-
tion and lead to neuronal cell death in AD [37]. To deter-
mine whether soy isoflavones affect β amyloid formation
in vivo, we measured β amyloid in the transgenic C. elegans
CL2006 by thioflavin S staining. β amyloid was stained
and the fluorescent images were quantified. Quantita-
tively (Fig. 3), the mean numbers of β amyloid staining
per head area of the nematode are significantly reduced
only in the transgenic C. elegans (CL2006) fed with gly-
citein (4.1 ± 0.4) compared with unfed controls (6.9 ±
0.5). A moderate reduction, although not significant, was
observed in the C. elegans fed with genistein (6.1 ± 0.5).
No change of Aβ deposits was observed in the worms fed
with daidzein (6.9 ± 0.6). None of the three soy isofla-
vones inhibited Aβ aggregation in vitro (data not shown),
suggesting that the decreased β amyloid by glycitein in the

transgenic C. elegans (Fig. 1) is not due to its direct bind-
ing to Aβ, but might be a consequence of its antioxidative
action (Fig. 2).

Discussion
In this study, we employed a transgenic C. elegans model
to evaluate the pharmacological effect of the soy-derived
isoflavones genistein, glycitein and daidzein, on Aβ-initi-
ated toxicity and oxidative stress. Results of these assays
indicate that among the three isoflavones tested, glycitein
delayed Aβ induced paralysis and attenuated the levels of
amyloid formation in the transgenic C. elegans. In

Effect of soy isoflavones on Aβ deposits in transgenic C. elegansFigure 3
Effect of soy isoflavones on Aβ deposits in transgenic C. ele-
gans. A. Representative images of thioflavin S staining in the 
transgenic (left) or wild type (right) worms. B. Quantitative 
Aβ formation. β amyloid were stained with thioflavin S in C. 
elegans CL2006 fed with or without isoflavones (100 µg/ml) 
for 4 days starting at the second day of age. β amyloid were 
examined using a fluorescence microscope. The quantity of β 
amyloid is expressed as mean number of Aβ deposits/worm 
head area (n = 24).

A β amyloid staining (CL2006)

CL2006 wild type N2

0

1

2

3

4

5

6

7

8

*

A
β
d
e
p
o
s
it
n
u
m
b
e
r
/
w
o
rm

Ctrl Daidzin Genistein Glycitein

B quantitative β amyloid (CL2006)
Page 5 of 9
(page number not for citation purposes)



BMC Neuroscience 2005, 6:54 http://www.biomedcentral.com/1471-2202/6/54
addition, glycitein significantly scavenged hydroxyl free
radicals and inhibited the oxidation of peroxynitrite in
vitro.

There has been strong evidence for the neuroprotective
role of estrogen in aging animal studies and human stud-
ies [8,11,26,38-42]. Evidence for estrogens effect on cog-
nition in women with AD is controversial [10,14].
However, it was reported that ovariectomized guinea pigs
had a pronounced accumulation of β-amyloid plaques
compared to intact controls and that estrogen replace-
ment reversed the accumulation [3]. A proposed mecha-
nism for estrogen inhibition of plaque formation is that
estrogen induces the cleavage of membranous amyloid
precursor protein (APP) generating a soluble proteolytic
fragment that precludes the development of β-amyloid
plaque formation [5,6]. The possible link between estro-
gen and Aβ prompted us to determine the effect of phy-
toestrogens on Aβ-induced toxicity in a model organism.
Knowing that apl-1, the member of APP family in C.
elegans, lacks a recognizable Aβ sequence [57, 58], the
effect of phytoestrogens may have different mechanisms
of action. Phytoestrogens have received increasing atten-
tion due to their potential protective effects against age-
related diseases and hormone-dependent cancers. Phy-
toestrogens have the ability to selectively activate estrogen
receptors, thus affecting many of the biological responses
that are caused by endogenous levels of estrogen without
concurrent and undesired side effects. Phytoestrogens
may act both as an agonist and antagonist in a tissue spe-
cific manner [4]. It was suggested that phytoestrogenes
can significantly influence sexually dimorphic cognitive
behavior by enhancing spatial memory in young adult
female animals but inhibit this ability in male [4].

Our observation that glycitein, with weaker estrogenic
activities than genistein and daidzein, inhibited Aβ-
induced paralysis and deposition, suggests that neuropro-
tection by phytoestrogens may not be mediated through
the estrogenic activity of the compounds. Compared to
other soy isoflavones, the estrogenic activity of glycitein is
20 times lower than genistein and daidzein and 200 times
lower than 17β estradiol [16]. Soybeans contain large
amounts of glycitein and its glycosides, which have been
reported to inhibit growth and DNA synthesis of smooth
muscle cells [23].

Apparently, it is the antioxidant activity that contributed
to the protective effect by glycitein against Aβ-toxicity (Fig.
1) since glycitein is the only soy isoflavone which signifi-
cantly attenuated the levels of ROS in the C. elegans (Fig.
2). Oxidative free radicals have been postulated as a cause
of aging and of some degenerative diseases [45,46]. The
formation of free radicals by Aβ in vitro [46] and profound
induction of protein carbonyl in the transgenic C. elegans

suggests that Aβ-induced oxidative stress triggers Aβ-
induced paralysis in the C. elegans [47]. Although Aβ
aggregations have been identified as neurotoxic to the
brain, oxidative stress is predicted to occur before these
aggregations [47] leading to cell apoptosis. Thus the
observed reduction in amyloid formation might also be
due to the anti-oxidant activities of glycitein. These obser-
vations go along with the free radical hypothesis of aging,
which states that there is an imbalance of free radicals and
reactive oxygen species (ROS) in the brain causing signif-
icant damage to key cellular components [45]. This imbal-
ance may be the causative agent for the pathology of
neurodegenerative disorders (such as AD) since most of
these disorders are associated with age [48]. The toxicity of
free radicals depends on the kinetics of their production,
as well as on their stability and transfer efficiency to lipids
and proteins. These radicals may interact with other radi-
cals to produce Aβ aggregates [49], and promote the cleav-
age of the Aβ precursor (APP) supporting the idea that AD
can be attributed to continuous oxidative stress, along
with a weakened antioxidant status [49].

The causal relationship between ROS and Aβ has been
long debated in the field. The transgenic C. elegans would
allow us to address the issue. We have conducted a paral-
ysis assay in the C. elegans fed with vitamin C and EGb
761, a Ginkgo biloba leaf extract. Surprisingly, vitamin C
alone did not delay Aβ-induced paralysis, but it did when
combined with EGb 761, which also inhibits Aβ oli-
gomerization (data not shown), suggesting that it is the
combined actions of antioxidants and other protection
against Aβ toxicity that is necessary for alleviating Aβ-
induced paralysis. Thus, we consider that the antioxidant
action is only partially contributing to the protection
against Aβ toxicity. Same argument may apply to the dis-
crepancy of the genistein's effect between Fig 2A and Fig
3B; the increased levels of ROS by genistein did not corre-
late with a decreased Aβ deposition. Defining a functional
relationship between Aβ deposition and toxicity, and ROS
level is certainly one of our future directions.

The assumption that the protective effect by glycitein
against Aβ toxicity might not be mediated by its action on
the estrogen receptor is supported by our observation that
genistein, with strongest estrogenic activity among soy
isoflavones, did not offer protection again Aβ-toxicity.
Genistein is a known tyrosine kinase inhibitor. The effec-
tive concentration for genistein to activate the estrogen
receptor and inhibit tyrosine kinases is much lower (nM-
µM) than the concentration we applied to the worms [4]
and [5]. These differential concentration effects of geni-
tein might offer protection against Aβ toxicity/paralysis.
However, our additional experiments using much lower
dosage of genistein did not provide evidence to support
this notion. Aβ-induced paralysis was not affected in the
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worms fed with either of the two lower concentrations.
Since at the given concentration (10 µg/ml, i.e. 37 µM),
we observed effects with glycitein but not genistein, we
assume that they have differential effects on Aβ-induced
paralysis. It has been shown that high dose of genistein
(µM) could cause apoptosis in rat primary cortical neu-
rons in vitro via a calcium dependent pathway [43].

We demonstrated a consistent, correlative effect by gly-
citein against Aβ-induced toxicities using different assays,
which suggests that C. elegans is a valid model for mecha-
nistic examination of the transgene products as well as for
pharmacological analysis of time course and kinetics of
drug effect [50,51]. A relationship between Aβ amino-acid
sequence, amyloid formation and oxidative damage was
established using this model. Yatin et al. [46] showed
both in vitro and in the C. elegans model that methionine
(Met35) is critical for free radical production by Aβ1–42,
and it is also critical for β-sheet formation in the trans-
genic C. elegans lines [52]. A correlation between a pro-
gressed paralysis phenotype with increased levels of
protein carbonyls in CL4176 [47] supports the advanced
"amyloid hypothesis" [37]. Mammalian αB-crystallin
(CRYAB) a stress-inducible chaperone protein, which
inhibits fibril formation of Aβ-(1–42) [53], has a protein
homologue HSP-16 in the C. elegans. This protein has
been reported to be colocalized with intracellular Aβ and
up regulated in the transgenic Aβ-expression strain of C.
elegans [35]. We previously demonstrated that a neuro-
protectant, EGb 761, an extract from the ginkgo biloba tree
leave, suppressed HSP-16 expression [54]. Although
many protein molecules including estrogenic receptors
are conserved in the nematode [55], the lack of correla-
tion between isoflavone estrogenic activity and suppres-
sion of Aβ toxicity in this model system may not exclude
the neuroprotection estrogen in AD patients. Neverthe-
less, it is likely that the temporal sequence of events man-
ifested in the transgenic worms is the same as the one
demonstrated in a Drosophila model of AD [56] in that
accumulation of Aβ42 in the brain is sufficient to cause
cognitive impairment and neurodegeneration.

Conclusion
We used a transgenic C. elegans model to evaluate the
pharmacological effect of the soy-derived isoflavones gen-
istein, glycitein and daidzein, on Aβ-initiated toxicity and
oxidative stress. Among the three compounds tested, only
glycitein alleviated Aβ expression-induced paralysis in the
transgenic C. elegans, which correlated with a reduced
level of hydrogen peroxide and β amyloid. These findings
suggest that the neuroprotective effect of phytoestrogens
is probably due, at least in part, to its antioxidative
activities.

Methods
Soy isoflavones were obtained from the National Natural
Products Research Center (Oxford, MS). Stock solutions
of the soy isoflavones (1 mg/ml, 1000× stock solution)
were made in 100% ethanol. The final concentration of
ethanol in the food did not exceed 0.01%. DMPO (5,5-
dimethyl-1-pyroline-1-oxide, tNB(3,3,5,5-tetramethyl-
pyrroline N-oxide) were purchased from Sigma Chem Co.
DMPO was purified by active charcoal.

C. elegans strains
The construction and characterization of the transgenic
nematode strains CL2006 and CL4176 have been
described previously [34,35]. The CL2006 strain constitu-
tively produces a muscle-specific Aβ1–42, whereas the
expression of Aβ1–42 in CL4176 depends on a temperature
up-shift from 16 to 23°C. Age-synchronized wild type
(N2) and the transgenic CL2006 were propagated at 20°C
in a temperature-controlled incubator (Sheldon Manufac-
turing, Model 2005, Cornelius, OR), CL4176 at 16°C, on
solid nematode growth medium (NGM) seeded with E.
coli (OP50) for food. All chemicals for treatment of exper-
imental animals were added directly to the OP50 food
source and began when larvae were 2 days old (for
CL2006). In most cases, the nematodes were treated for 4
days (after hatching) with their respective drug. In the life
span assay, the C. elegans were treated with the drug for
the duration of their lifetime.

Paralysis assays
C. elegans strain CL4176 [35,47] was maintained at 16°C
and egg-synchronized onto 35 × 10 mm culture plates
containing vehicle or drug. The worms (100 worms on
each plate) were allowed to grow for 38 h at 16°C. After
38 hours the temperature was up shifted to 23°C to
induce Aβ expression. Paralysis was scored at 1 h intervals
until all worms were paralyzed

H2O2 assay in C. elegans
Intracellular levels of H2O2-related reactive oxidative spe-
cies (ROS) were measured in C. elegans using 2,7-dichlo-
rofluorescein diacetate (DCF-DA; Molecular Probes). At
the end of the specified treatment times, the C. elegans
were collected into 100 µl phosphate buffered saline
(PBS) (molarity) with 1% Tween-20 (PBST) in eppendorf
tubes. The worms were then sonicated (Branson Sonifier
250, VWR Scientific, Suwanee, GA) and pipetted into
wells of 96-well plates containing DCF-DA (final concen-
tration 50 µM in PBS). Samples were read every 10 min for
2.5 h. in an FLx800 Microplate Fluorescent Reader (Bio-
Tek Instruments, Winooski, VT) at 37°C at excitation 485
nm and emission 530 nm.
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ESR assay of free radicals
In order to measure the effect of glycitein on free radicals,
the spin trap and the system-generated free radicals were
mixed and measured with ESR spectrometer and the sig-
nal intensity was taken as Ho. Then the system with addi-
tion of glycitein was measured again. Hydroxyl radicals
(H2O2 3%), Fe2SO4 (0.1 mM) and DMPO (0.1 mol/l)
were mixed and sucked into a quartz capillary for ESR
measurement, and the signal intensity was taken as Hx.
The scavenging effect was calculated by [(Ho-Hx)/Ho] ×
100%. The ESR spectra were recorded with Brucker ER200
D-SRC ESR spectrometer. Parameters were employed as
follows: X-band, 100 kHz modulation with amplitude 1
G, microwave power 10 mW, central magnetic field 3,250
G, sweep width 200 G, temperature 20°C.

Fluorescent staining and quantitation of β amyloid
Individual CL2006 transgenic nematodes were fixed in
4% paraformaldehyde/PBS, pH 7.4, for 24 h at 4°C, and
then permeabilized in 5% fresh β-mercaptoethanol, 1%
Triton X-100, 125 mM Tris pH 7.4, in a 37°C incubator
for 24 h. The nematodes were transferred, stained with
0.125% thioflavin S (Sigma) in 50% ethanol for 2 min,
destained for 2 min in 50% ethanol, washed with PBS and
mounted on slides for microscopy. Fluorescence images
were acquired using a 40× objective of a fluorescence
microscope (BX 60, Olympus, Tokyo, Japan) equipped
with a digital camera (Micropublisher 5.0, QIMAGING,
Burnaby BC, Canada). The Thioflavin S-reactive deposits
anterior of the pharyngeal bulb in individual animals
were scored.

Statistical analyses
All statistical tests were performed using a PC-based ver-
sion of the statistical program Origin 6.0 software (Micro-
cal Software, Inc., Northampton, MA). Statistical
comparisons between treatments were done with
unpaired student t-test. All figures indicate means and
standard error of the mean. Differences with a p value less
than 0.05 were defined as statistically significant.
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