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Abstract

with which to do so.

Background: Pairwise association between neurons is a key feature in understanding neural coding. Statistical
neuroscience provides tools to estimate and assess these associations. In the mammalian brain, activating ascending
pathways arise from neuronal nuclei located at the brainstem and at the basal forebrain that regulate the transition
between sleep and awake neuronal firing modes in extensive regions of the cerebral cortex, including the primary
visual cortex, where neurons are known to be selective for the orientation of a given stimulus. In this paper, the
estimation of neural synchrony as a function of time is studied in data obtained from anesthetized cats. A functional
data analysis of variance model is proposed. Bootstrap statistical tests are introduced in this context; they are useful
tools for the study of differences in synchrony strength regarding 1) transition between different states (anesthesia
and awake), and 2) affinity given by orientation selectivity.

Results: An analysis of variance model for functional data is proposed for neural synchrony curves, estimated with a
cross-correlation based method. Dependence arising from the experimental setting needs to be accounted for.
Bootstrap tests allow the identification of differences between experimental conditions (modes of activity) and
between pairs of neurons formed by cells with different affinities given by their preferred orientations. In our test case,
interactions between experimental conditions and preferred orientations are not statistically significant.

Conclusions: The results reflect the effect of different experimental conditions, as well as the affinity regarding
orientation selectivity in neural synchrony and, therefore, in neural coding. A cross-correlation based method is
proposed that works well under low firing activity. Functional data statistical tools produce results that are useful in
this context. Dependence is shown to be necessary to account for, and bootstrap tests are an appropriate method

Keywords: Cross-correlation analysis, Bootstrap, Spike-trains, Dependence, Low firing-rate, Functional data

Background

The nervous system consists of a very large number of
neurons—and glial cells—that are connected in complex
networks. Neurons convey information by means of elec-
trical pulses, called action potentials or spikes, consist-
ing of a very fast and transient depolarization of their
membrane potential. Sequences of spikes, called spike
trains, are believed to serve as an information code in
the brain. Pairwise synchrony between spike trains is
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widely studied in neuroscience as a way to understand
these codes. Although neuronal interactions are proba-
bly not described only by pairwise associations [1], they
have been shown to provide important information about
neural coding [2-5]. On the other hand, the definition of
neural synchrony is a matter of debate and different con-
ceptions of it exist, such as “exact spiking coincidence”
or “firing rate association” There are several existing
models for synchrony between simultaneous spike trains,
most of them based on cross-correlation analysis. Com-
mon methods to measure synchrony are, for example,
the cross-correlogram or the joint peristimulus time his-
togram [6]. Other methods not based on cross-correlation
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analysis include unitary event analysis [7,8], conditional
synchrony measure [9] and a method based on the dis-
tances between the closest spikes [10], among others.
Most commonly, association measures are used to test for
the presence/absence of synchrony. Several methodolo-
gies exist for this aim [11,12]; however, in this paper we
address a different problem. We use a cross-correlation
based method, called the Integrated Cross-correlation
Synchrony Index (ICCSI), which allows us to obtain a
synchrony curve as a function of time and search for
differences in the strength of pairwise associations regard-
ing different factors. A similar problem was considered
by Faes et al. [9], where these authors compare the syn-
chrony between neurons under experimental conditions
with synchrony at baseline.

During deep sleep, neurons in the cerebral cortex
present a highly oscillatory global activity that can be
observed by means of an electroencephalogram (EEG) or
an electrocorticogram (ECoG). Furthermore, in the awake
state, these global oscillations disappear giving rise to a
less synchronized global activity. The transition from the
sleep state to the awake state is regulated by the acti-
vating ascending pathways, which are afferent neuronal
pathways originating in nuclei located at the basal fore-
brain and the brainstem [13,14]. Under general anesthesia,
the EEG is characterized by the presence of a number of
patterns (spindles, K-complexes, delta waves) that show
a progressive increase in low-frequency, high-amplitude
activity [15-17]. In this scenario, the transition to the
awake-like state can also be reproduced by means of
microelectrical stimulation of some activating ascending
areas [18]. On the other hand, an important property of
neurons in the primary visual cortex (V1) is orientation
selectivity; i.e., the neurons respond better (with a higher
firing rate) to a specific orientation of the visual stimu-
lus, the so-called preferred orientation [19]. This property
is important in neurophysiological studies because it can
provide meaningful clues regarding the physiology and
microanatomy of the striate cortex.

The aim of the present study is to investigate the dif-
ferences in synchrony strength regarding different exper-
imental conditions given by anesthesia and awake-like
activity, as well as the orientation selectivity of neurons in
V1: we study whether similarities among neurons, such as
the similarity in preferred orientation, affect the strength
of correlated activity. We perform the analysis in a group
of neurons recorded from V1 of an anesthetized adult cat.
A method is proposed to investigate whether the mode
of activity (anesthesia or awake-like), and the affinity in
orientation selectivity of a given pair of neurons, have a
determinant influence in how neuronal synchronization
evolves.

The data are synchrony measurements computed at
any time point. Therefore, the data are curves varying
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continuously over time. This is the reason why, in this
paper, the word functional will be used to denote the
nature of the data and not to make reference to the neuro-
physiology of the neurons under study. This term comes
from statistics, where “functional data analysis” is a widely
developing research field.

A functional two-way analysis of variance is proposed.
Functional data analysis tools, based on Cuesta-Albertos
and Febrero-Bande [20], are used. The method is adapted
to consider the dependence that exists among the data
because of the experimental setting. A parametric boot-
strap is proposed for hypothesis testing.

Methods

In this section, the data are presented. Also, the synchrony
measure used to obtain the functional data is described, as
well as the statistical methodology used to cope with the
functional analysis of variance (ANOVA) model.

Dataset

Data were recorded from an anesthetized and paralyzed
adult cat. A microelectrode array with eight indepen-
dent movable electrodes was introduced into the pri-
mary visual cortex of the animal for neuronal recording.
Another two microelectrodes were introduced into the
brainstem and basal forebrain for electrical stimulation.
These stimulations, which we denote as bs (when the
brainstem is stimulated) and bf (when the basal fore-
brain is stimulated), provoked a change in cortical activity
from anesthesia to an awake-like pattern. All experi-
ments followed the guidelines of the International Council
for Laboratory Animal Science and the European Union
(statute nr 86/809) and the protocols were approved by the
University of A Coruina Committee on Animal Care.

At the beginning of each recording, neurons were char-
acterized regarding their preferred orientation. Drifting
gratings were used to visually stimulate the cat while the
firing activities of a group of neurons were recorded. Each
grating corresponded to an angle, which we call orienta-
tion, with a specific direction of movement. Orientation
(and direction) are continuous variables; however, owing
to the nature of the experiments, they will here be con-
sidered as discrete. Sixteen possible orientation-direction
gratings were used: eight orientations with two possible
directions each. For example: a drifting grating at 90°
(the lines composing the grating are, therefore, vertical)
that moves from right to left is a possible orientation-
direction stimulus; another moving from left to right is a
different one. Although the use of the two possible direc-
tions is also of interest in the study of other properties
of V1 neurons (for example, the selectivity to direction),
in this work we focus our analysis on the orientation
selectivity. Hence, there were eight possible values for ori-
entation: 0°,22°,45°,67.5°,90°,112.5°,135° and 157.5°. So,
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each recorded neuron was associated with one orienta-
tion (the preferred one), corresponding to its maximum
firing rate. However, we still need to go one step further,
as the objective of the study is to evaluate the effect of ori-
entation selectivity on neural synchrony. To achieve this
aim, each pair of neurons is identified with a value of a
variable, G, which is defined as the difference between the
preferred orientations of the neurons that form the pair.
That is, if O; and O, are the preferred orientations of two
neurons, we define G = min{|O; — O3], 180° — |O; — O|}.
Given the previous considerations, G can take one of these
five possible outcomes: 0°,22.5°, 45°, 67.5° and 90°.

Throughout the paper, we will denote the number of
neurons in a simultaneously recorded group by # and the
number of possible pairs by r = "V, The number of
experimental conditions will be denoted by K, the num-
ber of trials in each of these conditions will be L and N
will denote the total sample size: N = KrL. For our data,
n=_8,r=28K=2,L =4and N = 224. The firing rates
of the test neurons varied from less than 1 Hz to around 7
Hz; however the most common values ranged from 1 to 3
Hz, denoting typically low firing activity.

Synchrony measure

To measure synchrony, we used a cross-correlation based
measure defined as the area under the cross-correlation
function in a neighborhood around zero. Data were
recorded under spontaneous activity, which is character-
ized by its very low firing activity. Exact spiking coin-
cidences hardly ever occur, although the global activity
of the brain is highly synchronized. By considering the
area under the normalized cross-correlation function in
an interval around zero we allow for a more relaxed defi-
nition of synchronous spike trains than that of just exactly
coincident events.

Integrated cross-correlation synchrony index (ICCSI)
J2

Let X1 = {Xi1 }{1:1 and X = {Xlz} . be two simultane-
]:

ously recorded spike trains in the time interval [0, 7]. That
is, X! is the time when the i-th spike of train 1 occurred,
and similarly for X2. Let U; and U_; be the waiting times
from a spike in train X] to the i-th subsequent and the i-th
preceding spike in train Xy, respectively. The probability
density functions of these random variables are called the
forward and backward cross-interval densities of order i,
respectively, and we denote them by ;(7) and 1_;(t). The
cross-correlation function ¢(X7, Xy; T) is defined as the
sum of cross-interval densities of all orders:

i=00

(AL ) = Y

i#0, i=—00

771‘(1'), (1)
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where 7 is an arbitrary value, the waiting time. The nor-
malized cross-correlation function

B T (T )
[ ¢(X, Xy t)de

represents the probability density function of the time
from an event in train &) to an event randomly chosen in
train X5 [21].

The observed spike trains can be used to estimate
the cross-interval densities. Empirical normalized cross-
correlograms are used to estimate the normalized cross-
correlation function. The cross-correlogram, 2()(1, X; 1),
is built as the histogram (or a smooth version, such as a
kernel estimation) of the observed waiting times between
the spikes of the first neuron and the spikes of the sec-
ond neuron. Usually, joint firing, or close-in-time firing,
is the event of interest so only small values of 7 in (1) are
taken into account. Then, we consider the normalized (in
[V, V]) cross-correlogram, ’f'(Xl, Xy; 1), as follows:

T (X, Xo57) = fbeXz; 2 for
[7, 0 (X1, Xy )de

—v<T<V

The intuitive definition of synchrony involves the event
of two neurons firing together. Under low firing rates, the
spikes corresponding to two highly synchronized neurons
do not appear exactly at the same time, although they may
follow a similar pattern. In this context, flexible tools are
needed to capture synchrony. We use the integral of the
cross-correlogram around zero:

Sv R
Y&, &) = T (X1, Xp; T)de, (2)

—dv

where § < 1 is an arbitrary small number chosen by the
researcher. In this way, we allow synchrony to be based on
delayed firing and not only on simultaneous firing. Inte-
grating 7 (X1, X»; ) in a neighborhood of zero we account
for spikes that occur closely in time, though not exactly at
the same time.

To study the evolution of synchrony in time, sliding win-
dows can be used. That is, if the total observational time of
the spike trains is [0, T'], synchrony at time ¢ € [w, T — w]
can be estimated by computing Y (X, X») in the time win-
dow (¢t —w,t+w]. Usingatime grid,0 < 1 < ... <ty <
T, and computing the ICCSI at each time point of the
grid, synchrony becomes a function of time: Y (X7, X»; £).
Details on functional data analysis are not given here,
though we outline the basic notions that are necessary to
understand our analysis. For details and theory on this
subject, we refer the reader to, for example, the books
[22-24].



Gonzélez Montoro et al. BMC Neuroscience 2014, 15:96
http://www.biomedcentral.com/1471-2202/15/96

The number of pairs in each of the categories given by
G (0°, 22.5°, 45°, 67.5° and 90°) is 5,12, 6,3 and 2 respec-
tively. Therefore, there are 20,48, 24,12 and 8 curves in
each category defined by stimulus and orientation. The
curves can be evaluated over as many points as desired.
Points in an equispaced grid 0 < ¢; < ... <ty = T
are considered: from 10s to 230s every 0.1s. Therefore,
each synchrony curve is evaluated over 2201 points. Let
v = {(i,j) :i,jel,...,nand i <j} and denote the pairs
of neurons with indices (i,j) € W. We will denote by
Y]g’/ ) (t) the [-th trial for the curve Y (X, Xj; £) under the
k-th stimulus; k = 1,2 and /[ = 1,2,3,4. The curves
are bounded, since 0 < YIS") ) <1 Vvt € [0,T].
Figure 1 shows the data averaged over trials. The top panel
shows the functions that correspond to bs stimulation
and the bottom panel shows the ones for bf stimula-
tion. Different colors are used for the different levels
of G.

We search for population differences in the dynam-
ics of the awake-like period induced by each stimu-
lus, taking into account the possible effect of the other
factor: difference between orientation selectivity. This
problem can be dealt with as a functional two-way
ANOVA with a two-level factor: stimulus and a five-level
factor: G.

Functional ANOVA

As already mentioned, the aim of this work is to search
for differences in synchrony dynamics relative to two fac-
tors: stimulus and difference in orientation selectivity. As
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the difference in orientation selectivity can take only val-
ues in a given finite set of values, the problem is one
of a two-way analysis of variance with fixed effects in
which the response variable is functional. In the following
subsection, we outline the methods.

The random projection method for the ANOVA model
The random projection approach in the functional data
context is based on the ideas of Cuesta-Albertos et al.
(2007) [25]. These authors give an extension, on Hilbert
spaces, to the Cramer-Wold theorem, which character-
izes a probability distribution in terms of one-dimensional
projections. Their Theorem 4.1 states that if two distribu-
tions are different, and we choose a marginal of them at
random, those marginals will almost surely be different.
Based on this fact, Cuesta-Albertos and Febrero-Bande
[20] propose a method for hypothesis testing in infinite
dimensional spaces. We will state their result more for-
mally, particularizing it to our problem. Let us assume the
data belong to a Hilbert space, H, with a scalar product
(,), and let ug be a Gaussian distribution in H. Suppose
the hypothesis to be tested is whether certain parame-
ters, say y1 and y», are equal (Hop : y1 = w). If y1 #
2, then the set of random directions, v, from ug in H,
for which (v, y1) = (v, y2), has probability zero. That is,
if Hy fails, then it also fails in its projected version for
ng—almost every v € H. Therefore, a test at level a in
the one-dimensional space is a test at the same level to
test Hy.

We now present the functional two-way ANOVA model
for our problem and state the methodology more formally.

ICCSI

ICCSI

0 Time (s)

Figure 1 Functional data. Top panel: ICCSI curves (synchrony between pair of neurons along time) averaged over four trials for the first stimulus,
bs. Bottom panel: ICCSI curves averaged over four trials for the second stimulus, bf. Different orientation selectivity groups are shown in different
colors: 0° (black), 22.5° (red), 45° (green), 67.5° (blue) and 90° (cyan).
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We consider the following linear model for the synchrony
curves:

YD @) = m(t) + @) + Beti) (8) + Vigiy ) + € (1),

(3)

fork = 1,2 and [ = 1,2, 3,4. The function y( I)(t) is the
ICCSI for trial [ of the pair given by neurons i and j under
stimulus &; m(¢) is the global effect curve and o (%) is the
effect of stimulus k. The function g : ¥ +— {1,2,---,5}
indicates the level of the factor G that corresponds to the
pair given by neurons i and j, identifying level 1 to 0°,
level 2 to 22.5° and so on. Therefore, ;) is the effect of
level g(i, j) on the synchrony curve. The effect of a possible
interaction between the factors is gathered by (i) and,

finally, éklj (t) is the random error term. For parameter
identifiability, we assume:

a1+ a2 =0, Z,Bg—o and ZZykg—O (4)

k=1 g=1
The relevant null hypotheses to be tested are:
Hy o1 =03 =0,
which means that there is no effect of the stimulus and
=B =0,

which states that there is no effect of the orientation selec-
tivity. Also, a hypothesis for the interactions is interesting:

Hg:ﬂ1=

Hf iy =0Vk=12Vge{l,2,...,5.

Theorem 2.1 in [20] states that, if the data belong to
a Hilbert space, H, endowed with a scalar product (,),
G is a Gaussian distribution on H such that its one-
dimensional projections are non-degenerate, then,

1. If 3k € {1, 2}, such that ax # 0, then

ug{v e H:{(v,ar) =0Vk e {1,2}}) =0

2. Ifdg € {1,2,3,4, 5}, such that g, # 0, then

uc{v e H: (v, By) =0Vg e {l,2,...,5}}) =0

3. If3k € {1,2} and g € {1, 2, 3,4, 5} such that Ykg # 0,
then

uc({v e H: (v, vg) =0Vk €{1,2},Vg €{1,2,...,5}}) =0

Therefore, the proposed procedure is to randomly
project the data on the one-dimensional space and to test
the hypotheses in that context. Given a random function,
v(¢), and denoting the projection of a function f € H in
the direction of v as f*), (v, f), we consider the projected
model:

GHO) _ ) L ) | g0 0 G)H)
Vi Vo + Byt Vigiy tea 0 )
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and the hypotheses in the one-dimensional problem:

H(‘))’a :aiv) = oz(v) =0

Hy? B == By = ©
and
HYY :yk(g”) =0 Vke{l,2}and g €{1,2,...,5}.

The tests defined in the one-dimensional response case
are clearly conditional on the random projection used, v.
To reduce the error introduced by the choice of the ran-
dom projection, we will use the correction that implies
controlling the false discovery rate (FDR) introduced
by Benjamini and Hochberg (1995) [26]. This method
is also recommended by Cuesta-Albertos and Febrero-
Bande [20]. In particular, we use the FDR procedure that
arises from the work of Benjamini and Yakutieli (2001)
[27]. Given the ordered p-values p)y < < P
obtained using s random projections, we will choose the
corrected p-value as the quantity min { Papi=1,---, s},
where min stands for the minimum of a set.

So far, this test can help in the search for global dif-
ferences between the two groups of curves, although we
would rather study how these differences change in time.
To do this, we propose the use of moving windows along
time. For each time point, ¢, we consider an interval of
time, centered at ¢, and project the pieces of curves that
correspond to that interval, to perform the ANOVA test.

The hypotheses in (6) can be tested with any regular
ANOVA approach. Nevertheless, some caution is needed,
as the errors in our model cannot be assumed to be
independent, as we discuss in the next subsection.

ANOVA model with dependent errors

In this section we introduce the problem of the depen-
dence that is present in the data. The dependency comes
from the fact that the data are observed at the neuron-pair
level. So, it is only fair to think that the curves obtained
from two pairs of neurons with one cell in common could
be correlated.

Since we work with the projections of the Y functions,
we can forget about the infinite dimensional problem and
focus on the one-dimensional one. Let us consider the
model in (5), dropping the superscript (v) for simplicity:

J’/(f/) =m+ ox + Bgij) + Vie(ij) T € ,2] ), (7)

with (5,j)) € ¥, k € {1,2} and g € {1,2,...,5}. Model (7)
is a two-way ANOVA model with a two-level first factor
and a five-level second factor, with unbalanced cells, as we
do not observe the same amount of pairs of neurons with
differences in orientation selectivity. The following rep-
resentation of the problem is more convenient. Consider
each Y]S'I ), ie., the synchrony of a given pair of neurons
under each stimulus, as a random variable. In this way, we
have four realizations of each variable, so our linear model
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becomes another linear model with 2r variables and L
observations each. The model can be written in matrix
form, as follows:

y=X0+e¢ (8)

where y € RNX are the data ordered in a convenient
form, X € RN is the design matrix, 8 € R%! is
the vector of parameters, 0T = (m, a1, B1, B2, B3, Ba» Y11,
Y12, Y13, Y14» Y15, V21, Y22, V23, ¥24). The parameters oy, Bs
and yy5 are not included in the definition of 0 because they
are superfluous by the conditions defined in (4). Finally,
e € RN is the vector of errors. Here, we consider the
data ordered as follows:

_ (12 (1,3) (7,8) , (1,2) (7,8) ,(1,2)
y_(yl,l VSR EREEREN S B BN LS UERERT N N BN ST RS
(7,8) (1,2) (7,8)
1 s V4 v Yod )

and therefore the vector of errors, €, has the form:
€ = ( (1,2) 6(1’3) 6(7’8) 6(1'2) (7,8) _(1,2)

€11 1€11 1--1€11 1€x1 se-r€x] 1€E1 seres
(7,8) (1,2) (7,8)
€13 re-er€g seer€q

The assumptions of normality and homoscedasticity for
the errors are reasonable in this context, but the funda-
mental problem in this study arises from the presence of
dependence among the data that comes from pairs of neu-

rons sharing a cell. That is, Y,il’] ) and Y,ill’] ) are dependent
if {i,/} N {i,j'} # @. The errors of the model are normally
distributed with zero mean and covariance matrix X. We
assume that the variance of e,(:’] ) is the same for all (i,)) and
all k and equal to o2. On the other hand, we also assume
that cov(e,(:’]), 6](:/’]/)) = po? whenever #({i,j} N {i,j'}) =1,
where # denotes the cardinal (number of elements of a
set). Let Q = {(i,, k, L, i, j, kK, 1) : #({i, {7, /) = Lk =
k',1 =I'} then, in summary:

o2 if G,k 1) = (], K,1)
o?p if ),k Li,j,k,l) e Q
0 otherwise

Cov(eg’j ) s e,(j’l];)) =

)

Therefore, T results in a very special matrix, with o2 in
the diagonal, and o2p where the variable in the column
and the variable in the row share a neuron and also share
a trial (and, thus, a stimulus). That is, X is a N x N matrix
composed by a diagonal of n r x r blocks, and the rest of
the elements are zeros. The blocks in the diagonal are all
equal and equal to the covariance matrix, 02C, of the data
that correspond to one level of the first factor (stimulus):

o?C 0 --- 0

) 0 ¢2C--- 0
(o p) = : : (10)

0 o0 - 02C
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With C = C(p) in our particular example (r = 28):

1 pppppplppppppl000O0O0(00O0O00O0O0(0O0fO0
p 1l ppppplp000O0O0|ppppplf0000f[000|j0 0|0
pplppppl0Op 00O0O0(pO0O0O0O|pppp|l000|0O0|O0
ppplpppl0O0pO00O0(0p O0O0O[pO0O0O0|ppp|0O0]|0
pppplppl0O00p00/00p0O0(0p O0O0fpO0O0|pp|0O
ppppplpl000O0p0|j]000p0[00p 0[0p O0|lp0]jp
ppppppl1{0000O0PHP00O0O0PO0O0O0LP|0O0LP|0p|p
pp 00O0O0O0(Lppppplppppplf000O0f[000j0 0|0
p 0O p0O0O0O0[p1pppplp00O0O0|ppppl00O0|0O0|0
p 00 pO0O0O0[pp1lpppl0p 00O0p0O0O0|ppp|0O0|0
p 000 pO0O0(ppplppl00pO0O0(0p O0O0fpO0O0|pp|0O
p 0000 pO0[pppplpl00O0pO0[(00p 0[0p O0lp0]jp
p 000O0O0plppppp1|/000O0P[0O0O0LP|0O0LP|0p|p
Opp 00O0O0O(pp 0O0O0O0[(Lpppplpppp|/000[00f0
C—OpOpOOOpOpOOOplppppOOOpppOOO
0pO0OO0pPpO0OO(pOO0OpPOO0O|lpplpplOp 0O0fpO0O0fpp|lO
0pO0O0O0pPOlp0OO0OO0OpO[(ppplpl00pO0]/]0p O0fp 0fp
0OpO0O0O0O0PpPlp0OO0O0OOpP[pppp1/000p0O0/p[(0p|p
00 ppO0OO0O0O(0OppOO0O0|pp 0O0O0|I1Lpopopelp p|0 Of0
00pO0OpO0OO0O(0OpOpOO[pOpO0O0lplpoplpO0O0fpp|l0
00 p0O0pPO[0p OO0pO[pO0O0pOlpp1lp|l0pOfp0fp
00 pO0OO0OO0PAPI0OPOOOLP|lpOO0OOLPIppp 1l0O0pP[0p|p
000ppO0OO0(0OO0pPPOO0O[0pp O0O0lpp 00|1pp|lppl|l0
000pPpO0OpPO0O(0OO0OpPO0OpPO|0OpOpOfpO0pOlplplpofp
000pPO0OO0PI0OO0POOP|I0OPOO0LpPIpO0O0plpp 1[0p|p
000O0pPpPO|0OOO0PPO[0O0LPPO|O p Ofp p O|1 plp
0000pPO0OpP[0OOO0POP|0OO0POO/P|O 0 plp O plp 1|p
000O0O0ppP|0OO0OO0O0/PP[0OO0O0LPP|0OO0pPP|O0Opplppl|l

With this definition, X is positive definite for small val-
ues of p. The eigenvalues of the matrix in (10) result in
only three different values: (1 — 2p)o?, (1 + 4p)o? and
(1 4+ 12p)a?, which, for p € [0,1], are all greater than
zero at the same time, whenever p < 0.5. This means that
this correlation structure for the data is plausible only for
p €[0,0.5).

TheF statistic

Our ANOVA problem comprises the hypothesis test that
some of the parameters in model (8) are equal to zero. In
matrix form, this can be written as

Hy:HO =h (11)

where, in the case of the stimulus effect,
H=(010000000000000)

and, in the case of the orientation selectivity, the hypothe-
sis matrix is

001000000000000
000100000000000
000010000000000
000001000000000
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and, in both cases, h is a vector of zeros. Let us denote by ¢
the total number of parameters in the complete model and
let go be the number of parameters, different from zero,
under the null hypothesis.

Let the residual sum of squares function, in matrix form,
be denoted by Q(6):

Q) = (y — X0)'(y — X6)

Denote by 6 the estimate of 6 in the complete one-
dimensional model and let 6 be the estimate for the
reduced model. That is, § is the vector of parameters that
minimizes Q(6) under the restriction given by (11). Then,
the classical ANOVA F statistic is

e (QO)-Qd)/d
Q©)/d>
where d; denotes the degrees of freedom of the numera-
tor, that is, ¢ — qo, and d the degrees of freedom of the
denominator: N — (g + 1).

The test statistic, F, under assumptions of indepen-
dence, normality and homoscedasticity, follows an F dis-
tribution with g—go and N —(g+1) degrees of freedom. In
our context, as the errors of the model cannot be assumed
to be independent, the test statistic does not have an Fj, 4,
distribution and, therefore, we need to calibrate the null
distribution of the test statistic. We propose a paramet-
ric bootstrap procedure to calibrate the distribution of the
ANOVA test statistic under the null hypothesis.

(12)

Estimation of the correlation coefficient

Since we assume that the covariance between the dif-
ferent pairs of error terms are equal, provided the pairs
belong to 2, we will estimate the correlation coefficient
as the average of the Pearson correlation coefficient of the
corresponding pairs, which is equivalent to:

11 Gj o

o = § : 2@ )

P= 6240 €k Crr
@ik K1) €

(13)

where @,((;’]) are the elements of the residual vector: € =

y — X6 and 62 is the estimated residual variance:

N 1 A\ 2
sl oy (@)
(ij)evw,
k=1,2;1=1,- 4
Direct bootstrap
As the data are normally distributed, we propose the use
of a parametric bootstrap to calibrate the distribution of
the ANOVA test statistic under the null hypothesis. We
now describe the procedure for a general null hypothesis
H}:6; =0.
Once the linear model has been fitted to obtain 6

and the classical ANOVA statistic has been computed
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(denoted by F°b5), we estimate o2 and p from the residuals
to build the estimated covariance matrix, ¥ = (62, p).
We proceed with the following bootstrap algorithm:

1. Replace the i-th parameter in the estimated 6 by zero
(null hypothesis). This set of parameters will be
denoted by 6. Build a bootstrap sample:

y* = X0y + zwithz ~ N(0, %).

2. Fit the linear model to the resample, obtain the

bootstrap version of the estimated parameters #* and

compute F*, the bootstrap version of F.

Repeat Steps 1-2 B times to obtain F*1, ..., F*2,

4. Compute the desired (1 — a)-quantile of the
bootstrap versions, F}_ + We reject the null
hypothesis if Fo% > Fi_,.

w

Results and discussion

In this section we show the results of applying the random
projections method to the functional ANOVA problem
at hand. To draw the random vectors we use Brownian
motions or, more precisely, approximations to standard
Brownian motions by sequences of partial sums of nor-
mally distributed random variables. We only need to
compute the values of the random vectors in the equidis-
tant time points, ¢1,- -, ty, where the functions g ©)
are defined. For this, we consider M independent and
identically distributed standard normal random variables,
Z1,...,Zpm, and define a trajectory v; as

v1(t1) =0 and vy (&) = vi(t—1) + (G — ti—1)Zk

fork=2,...,M. (14)

On the other hand, we would like to have directions
without tendency and such that their variability through-
out the trajectory does not change too much. For this
aim, we define the random trajectories as the sum of two
Brownian motions, as just defined, where one of them has
been “flipped" so as to be equal to zero in the last time
point . That is, let v; and v, be defined as in (14) and
let v3(tx) = vo(tpr—k+1)- The final directions we use are
defined as v(¢) = vy (£) + v3(2).

A preliminary analysis, fitting model (7), showed that
the interaction between factors was not significant.
Therefore, the final model considered is:

il =mt e B+ e’ (15)
with k € {1,2}, gGi,j) € {1,2,...,5},and [ € {1,2,3,4}.
Figure 2 shows the p-values obtained by using sliding win-
dows across time to study the evolution of the effects of
both factors. A 40-s time window was considered, mov-
ing along the time axis (in seconds) from 20 s of recording
to 215 s. In the time period between 110 s and 150 s, this
was done every second; for the rest, it was done every
5s. At each window, 30 random directions were used to
project the data (the same ones in every window) and
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vertical dotted lines depict the stimulation times.

Figure 2 ANOVA p-values. p-values for the two-way ANOVA as a function of time, for the significance of the stimulus effect (top panel) and for the
significance of the difference in orientation selectivity (bottom panel). p-values obtained using the fy, 4, distribution (red), direct bootstrap (black)
and x2-based bootstrap from the appendix (green) are shown. p-values below the horizontal dotted line (constant value 0.05) are significant. The
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the FDR correction was applied, resulting in just one p-
value. It is clear that there are differences between the
two approaches used. When dependence is not taken
into account (red lines) the test is less conservative than
when dependence is included. Although for the effect of
the stimuli there is a period of time at the beginning of
the awake-like period (right after stimulation) for which
both tests reject the null hypothesis, next there is another
period in which it would be rejected if dependence was
not accounted for. The results show that a period of time
exists during the awake-like mode when the difference
between the effects of the two stimuli is significant. This
result reinforces the view that there are important differ-
ences in the physiology and dynamics of the two activating
pathways: bs and bf. On the other hand, the differences
in synchrony among the levels of the factor G were also
found to be significant after the stimulus.

The estimation of the correlation coefficient changes
for each window; nevertheless, the estimation is not very
variable, even from one projection to the other. Figure 3
shows the 0 as a function of time and their mean across
projections. We can observe that, at the beginning of
the recording, the estimated correlation coefficients were
greater than 0.5 and they were truncated for the covari-
ance matrix, 3, to be positive definite.

When large correlation is present (o > 0.5) an alter-
native, nonparametric, bootstrap can be carried out. In
the following procedure, each set of bootstrap residuals is
defined as the set of original residuals of a trial chosen at
random with equal probability from all possible trials:

1. Foreachk € {1,2}and ! € {1, 2, 3,4} draw the
bootstrap pair (k*, [*) with equal probability from
{1,2} x {1,2,3,4}, that is, P(k* = K, I* = I') = } for
allk’ € {1,2,}and all k¥’ € {1, 2, 3, 4}.

. AlDE Ay .,
2. Define €)= €pip V@ )).

This bootstrap procedure has the drawback that, in
our case, the vector of bootstrap residuals can only take
eight possible values. A possible improvement is to use a
smoothed version. To achieve this, a smoothing parame-
ter A, typically small with respect to the standard deviation
of the residuals, is chosen and Step 2 is replaced by:

2. Define " — 209 4 5z vigh 09 ~ N(0, )
iid ¥(, j).

The green curve in Figure 2 represents the p-values
obtained with an alternative bootstrap algorithm based on
an approximation to the real distribution of the F statis-
tic. This alternative method, which we call the Xz—based
bootstrap, reduces computational time considerably. It
involves some theoretical insight that we describe in the
Appendix. The main result is based on the fact that the
test statistic F can be expressed as a ratio of quadratic
forms on the errors of the model. There are plenty of
results concerning the exact distribution of quadratic
forms on normal vectors. For example, Provost et al. [28]
derive the exact density function of an indefinite quadratic
form in noncentral vectors, which allows us to derive the
distribution of ratios of quadratic forms as those involved
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Figure 3 Correlation coefficient estimates. Evolution of the correlation coefficient estimates. Estimations for different random projections (grey
lines), and their means (black line). The vertical dotted lines depict the stimulation times.

in ANOVA tests. Nevertheless, the closed formulas for
the density functions of quadratic forms are complex and
not practical. On the other hand, the distribution of the
numerator and the denominator that give shape to the F
statistic are quite easy to approximate by Montecarlo, as
is also described in the Appendix. We use this approach
to carry out, in the next two sections, an evaluation of
the test. First, we compare the distribution of the test
statistic when dependence is either taken into account or
not. Finally, we perform a simulation study to evaluate the
performance of the bootstrap test.

Distribution of the test statistic F

To visualize the differences between the distribution of the
test statistic, F, either when taking into account depen-
dence or when independence between observations is
assumed (F distribution), Figures 4 and 5 show the den-
sity of F under the null hypotheses, approximated by
Montecarlo in the numerator and denominator of (20).
The model used is the same as in the real data case; i.e.,
y = X0 +-¢€ given by (15). The real data scenario was repro-
duced by constructing the model for eight neurons and
four trials under each stimulus. The values of the second
factor were exactly as in the real case. Moreover, the errors
were assumed € ~ N(0, X) with ¥ defined as in (10) with
02 = 1 and different values for the correlation coeffi-
cient: p = 0,0.1,0.15 and 0.4. The first panel of Figures 4
and 5 show that the null distribution of the test statis-
tic corresponds to the Fy, 4, distribution (as it should)
when p = 0. Figure 4 shows that, on the other hand,
the Fy, 4, distribution departs from the null distribution
of the test statistic when p increases. This is evidence for
the necessity of using the bootstrap to calibrate the dis-
tribution of F instead of using the F distribution. Figure 5
shows the comparison of both densities for the hypothe-
sis on B;. In this case the difference is not as large as in

the previous case. However, in the last panel we can still
observe a small deviation. In general we can state that,
when p increases, the tail of the distribution becomes
heavier. This explains why, sometimes, the test using the
classical approach rejects while the bootstrap approach
does not.

Performance of the test

In this section we perform a simulation study to evalu-
ate whether the type I error (probability of rejecting the
null hypothesis given that it is true) of our test is close
to its nominal value (a 0.05). Also, we evaluate the
power of the test, which is the probability that it correctly
rejects the null hypothesis when the null hypothesis is
false. For this aim, we simulated data, similar to real data,
using different (known) model parameters and correla-
tion coefficients. With the simulated data, we computed
F and followed the procedure used to calibrate the dis-
tribution of the test statistic with level 2 = 0.05. Finally,
we compared the results (acceptance/rejection of the null
hypothesis) with the true case. The data were generated
as if three trials under two stimulation conditions of a
group of seven neurons had been recorded. Each neu-
ron was assigned a given fixed characteristic (orientation
selectivity) so that the second factor (difference in ori-
entation selectivity) could be computed. In this case, the
preferred orientations were defined with only two possi-
ble values that were assigned arbitrarily to each neuron.
Then,

y=X0+¢ €~N(0, %),

where & = (m, a1, f1)¢. The covariance matrix, X, was
defined as in (9) for four values of p. The values used
for the simulations are m = 0, @y = 0,0.25,0.5, 81 =
0,0.25,0.5and p = 0,0.05,0.15,0.35.
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Figure 4 Test statistic density function under no stimulus effect. Probability density function of the test statistic under no stimulus effect (black
lines) compared with the corresponding Fg, 4, distribution (red lines) under different correlation scenarios: p = 0 (top-left panel), p = 0.1 (top-right
panel), p = 0.15 (bottom-left panel) and p = 0.4 (bottom-right panel).
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Figure 5 Test statistic density function under no effect of the difference in orientation selectivity. Probability density function of the test
statistic under no effect of the difference in orientation selectivity (black lines) compared with the corresponding g, 4, distribution (red lines) under
different correlation scenarios: p = 0 (top-left panel), p = 0.1 (top-right panel), p = 0.15 (bottom-left panel) and p = 0.4 (bottom-right panel).
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A large variance (0% = 1) with respect to the parame-
ters was chosen to reflect a typical situation for the real
data. For most of the projections, the signal to noise ratio
is rather small. This large variance might affect the ability
of the test to detect differences between the parameters.
M = 5000 Montecarlo simulations were performed and
for each one, B = 500 bootstrap trials were used. The
results are shown in Tables 1, 2 and 3. Table 1 shows
the proportion of rejections when testing for no effect
of the first factor. It can be observed that the nominal
level of the test is not well respected under dependence.
The test is moderately anti-conservative when using the
bootstrap, and severely anti-conservative when using the
F distribution. When using the bootstrap, the rejection
percentage under the null remains close to the nominal
even when increasing the dependence. This is not the case
when using the F distribution, since the rejection percent-
age under the null is inadmissibly large. Table 2 shows
the proportion of rejections when testing for no effect
of the second factor. In this case, the bootstrap respects
the nominal level reasonably well when testing for f;.
However, the test based on the F distribution is very con-
servative under large dependence. Regarding the power of
the test, Table 1 shows that the proportion of rejections
decreases when p increases for both tests. It is noticeable
that the power of the test based on the F distribution is
rather larger than that of the bootstrap test, especially for
large correlations. Nevertheless, the fact that the level of
the test is respected a lot better by the bootstrap makes
this method more appropriate. Table 2 shows that, sur-
prisingly, the value of the correlation parameter does not
influence the results, regarding power, when testing for ;.
For 81 = 0.5, we can observe near to 100% rejection under
the alternative in almost all cases. Table 2 also shows how
the power of the bootstrap test is better compared with
the one calibrated with the F distribution.

Finally, we show similar simulation results when testing
for the interaction between the two factors. Table 3 shows

Table 1 Proportion of rejections for Hy at level a = 0.05
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the proportion of rejections under the null hypothesis for
different values of p and 5000 Montecarlo replications.
We can observe that the nominal level is successfully
met by the bootstrap test for small correlation values.
Although for the case of large correlation values the
test seems to be conservative, it outperforms the F test
remarkably. It is important to note that, regarding the
power of the test, in these simulations the test rejected
the null hypothesis 100% of the time (results not shown),
using values of y = 0.5,1 to simulate data in the
alternative.

Conclusions

In this work we proposed a functional two-way ANOVA
for neural synchrony curves, using random projection
techniques. These methods are very easy to implement
and interpret, which makes them appealing for applying to
many problems. The method was shown to be useful as it
allowed the significance effects of the factors under study
to be addressed.

The model under study involves synchrony curves
obtained by a cross-correlation based method. The curves
were separated into groups given by the stimuli and the
difference in preferred orientation between the two neu-
rons involved in each curve. Differences between the
levels of this second factor were also of interest. Although
there were groups with very few elements, several conclu-
sions can be established.

The importance of including the dependence between
curves in the analysis was shown. The distribution of
the test statistic was approximated using a parametric
bootstrap on the residuals of the model, allowing for
dependence. The classical F test statistic can lead to false
positives, as the distribution of the test statistic has a heav-
ier tail than the F distribution. Two algorithms were pre-
sented to carry out the bootstrap: a direct resampling plan,
which resamples from the model, and a second one, based
on the fact that the F statistic has the same distribution

p=0 p = 0.05 p =0.15 p =035
Boot. F Boot. F Boot. F Boot. F

B =0 0.0456 0.0512 0.0804 0.1156 0.0828 0.2166 0.0816 0.3692

a; =0 B =025 0.0378 0.0464 0.0764 0.1102 0.0874 0.2258 0.0806 0.3680

p1 =05 0.0464 0.0536 0.0756 0.1092 0.0862 0.2178 0.0848 0.3780

B =0 0.7570 0.7906 0.6482 0.7476 0.4864 0.7044 03164 0.6762

a; =025 B =025 0.7564 0.7920 0.6590 0.7598 0.5022 0.7124 0.3204 0.6644
p1 =05 0.7548 0.7886 0.6342 0.7390 0.4860 0.7050 0.3164 0.6810

B =0 0.9996 0.9998 0.9940 0.9982 0.9430 0.9882 0.7794 0.9602

a; =05 B1 =025 0.9996 1.0000 0.9944 0.9988 0.9478 0.9970 0.7858 0.9596
p1 =05 0.9998 0.9998 0.9950 0.9986 0.9460 0.9898 0.7666 0.9568
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Table 2 Proportion of rejections for Hg atlevel a = 0.05
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p=0 p = 0.05 p =0.15 p =035
Boot. F Boot. F Boot. F Boot. F

a; =0 0.0588 0.0532 0.0558 0.0462 0.0444 0.0238 0.0376 0.0032

B =0 a; =025 0.0566 0.0538 0.0512 0.0448 0.0462 0.0244 0.0414 0.0032

a; =05 0.0516 0.0460 0.0484 0.0422 0.0448 0.0248 0.0374 0.0040

a; =0 0.7936 0.7844 0.8094 0.7926 0.8838 0.8358 0.9758 0.8858

B1 =025 a; =025 0.7938 0.7864 0.8280 0.8072 0.8716 0.8152 0.9796 0.9020
a1 =05 0.7830 0.7740 08118 0.7940 0.8824 0.8298 0.9802 0.9038

a; =0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000

B =05 a; =025 0.9998 9998 0.9998 0.9996 1.0000 1.0000 1.0000 1.0000
a; =05 1.0000 1.0000 0.9998 0.9996 1.0000 1.0000 1.0000 1.0000

as that of a ratio of particular linear combinations of X12
variables. The second algorithm has a substantially lower
computational cost than the first one.

Regarding the real data, the interactions between the
factors were not statistically significant. An effect of the
factor stimulus can be found at the beginning of the
awake-like period (a few seconds after the stimulus onset).
To make a statement regarding the differential effect that
bs and bf have on pairwise synchrony, the analysis of
more groups of neurons would be necessary. However,
this work shows that the question is worth asking, as we
were able to find evidence of these differences after the
switch from anesthesia to the awake-like mode. In fact,
taking into account the ability of bs and bf to promote
wakefulness with a similar effect on ECoG power spec-
tral density [29], the robustness of the proposed statistical
method (to be applied in low-activity cortical single units
recorded simultaneously) allows us to find some differ-
ences in neural pattern synchrony, consistent with phys-
iological data as follows. Activation of the parabrachial
nucleus in the bs enables thalamic relay neurons to dis-
rupt cortical synchronization via glutamate release [30]. In

Table 3 Proportion of rejections for H(’)' atlevela = 0.05

contrast, bf stimulation induces not only ACh release, but
also GABA, glutamate and NO in the cortex [18,31]. Thus,
although the effect that bs and bf activation has on ECoG
dynamics has been characterized as regulatory on cortical
activation, the different operational mechanism of each
system could be reflected in the temporal coordination
between neurons. Finally, a relevant issue in neurophysi-
ology relates to the type of information processing carried
on by primary visual cortex neurons [32-34]. Briefly, some
basic properties of the visual processing—like orienta-
tion selectivity—could be based either on highly refined
and specific anatomical connections or, in contrast, could
be carried out by distributed computational processes at
the cortical level. The results presented here show that
the effect of the difference in orientation selectivity was
significant throughout all the generated awake-like activ-
ity, suggesting that the strength of the connectivity was
dependent on the orientation selectivity of primary visual
cortex neurons, thus favoring the second hypothesis.
Overall, this work is a contribution to the development
of statistical tools for neuroscience. Although the meth-
ods we propose here have been focused on a particular

p=0 p = 0.05 p =0.15 p =035
Boot. F Boot. F Boot. F Boot. F

pr=0 0.0558 0.532 0.0554 0.452 0.0454 0.0254 0.0382 0.0036

a1 =0 B =025 0.0568 0.532 0.0506 0426 0.0458 0.0248 0.0386 0.0052

p1 =05 0.0500 0474 0.0476 0394 0.0478 0.0264 0.0410 0.0038

B = 0.0610 0.0552 0.0510 0.0414 0.0482 0.0274 0.0396 0.0032

o = 0.25 B =025 0.0530 0.0500 0.0494 0.0402 0.0442 0.0260 0.0334 0.0036
p1 =05 0.0502 0.0500 0.0496 0.0414 0.0472 0.0280 0.0374 0.0028

B = 0.0516 0.0464 0.0476 0.0408 0.0424 0.0236 0.0330 0.0024

a; =05 B1 =025 0.0582 0.0540 0.0516 0.0430 0.0440 0.0242 0.0414 0.0056
p1 =05 0.0524 0.0480 0.0552 0.0438 0.0500 0.0298 0.0370 0.0052
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problem, they are applicable in many other contexts. It is
worth to mention that differences were found even though
the firing activity of the test group was considerably low,
showing the method can be useful when low firing rates
are present. Also, bootstrap techniques are very powerful
and easy to implement (although, admittedly, they can be
computationally expensive), and might be a good alterna-
tive to parametric inference using minimal mathematical
assumptions.

Appendix - x2-based bootstrap

Here we present the results that provide a computationally
more efficient way to perform the bootstrap test. First of
all, let us rewrite F in a more convenient form. Recall

p_ QO —Qé)/d:
Q©)/d>
where 4 is the estimator of the parameter vector ¢ in the
unconstrained model, while 6 is the estimator under the

null hypothesis (H6 = h). It can be shown that 0 and 6
relate as follows:

6 = A9 + Eh
where
A=I-EH and E=X%X) "H (HX'X)"'H)"
and,

y— X6 =y — X0 + XE(H) — h)
which implies that
Q) = Q®) + (HH — h)'EXX!XE(H6 — h)
Moreover, we can write this expression as a quadratic
form based on the errors of the model by noticing that:
6 =A0 +Eh = AX*X)"'X/(X6 +€) + Eh =
= (I —EH)f + AX’X) X% + Eh = 0 + A(X*X) 1 X%
Therefore,
y— X0 = (I - XAXX)"1X)e
and finally,
Q) = /(I — XAX!X)"1XY)e (16)

In a similar way, the sum of squares of the denominator
can be expressed as

Q) = (y — X0)'(y — X0)
=y I - XXX)" Xy = ' (I — X(X!X)"1X)e
(17)
From (16) and (17) we obtain:
Q0 — Q) = ¢ (XXX)'X! - XAX'X)'X) €
= (XXX T H (HXX) T H) TTHXX) 71X €
(18)
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Let us denote the matrix in the last expression of (18) by
Ay = (XXX TTHAHEX) T H) TTHXEX) 1XE)
and the final matrix in (17) by
Ay =1— XXIX)~1x?

Finally, we can give the expression for the F statistic in
terms of quadratic forms on normal vectors:

_ EtAlé/dl
o etAze/dz

where € ~ N(0, X).

Let us denote Z = €‘Aje. Also, let S be a matrix such
that © = SS and let R = S~le. We denote the eigenval-
ues of SYA;S, or equivalently those of XAy, by Aq,...,An
and by P, an orthogonal matrix whose columns are the
eigenvectors of S’A1S. So, Z = R’SYA;SR = R‘PDP'R =
et(ST1H!PDP!S~1e = V!DV, where V = P!S~le and D
is a diagonal matrix with diagonal elements Aj,..., An. It
follows that V ~ N (0, I) and, therefore,

N
Z=> 1V}
i=1

where Vi2 ~ X12 fori=1,...,N.

The same argument is true for the quadratic form in the
denominator of F. Thus, the distribution of €/Aje is the
same as the distribution of Zfil /L,-\/Viz, where ©1, ..., un
are the eigenvalues of XAy and W/i2~ )(12, i=1,...,N.
Consequently, the ratio

1 N /2
a4y i1 2V
1 N 2
do >im1 i W

has the same distribution as F. The distribution of (20) can
be approximated by Montecarlo.

In practice, ¥ is not known, so the %; and p; can-
not be computed. However, & can be replaced by £ =
(62, p) as in (10). Thus, A; and f; (the eigenvalues of
fAl and ng) can be used in (20). Observe that this is
equivalent to the original bootstrap resampling plan as
presented above. This gives an alternative method for per-
forming the bootstrap that is much less time consuming.
For instance, in the example shown in Figure 2, the results
obtained with the direct bootstrap are reproduced, except
for minor differences due to Montecarlo error, and the
computational time is at least 30 times smaller with this
alternative method.

(19)
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