POSTER PRESENTATION

Open Access

Evolutionary algorithm search for network connectivities conducive to periodic behavior at sub-spiking frequencies

Daniel T Robb^{1*}, Natalia Toporikova²

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

We use an evolutionary algorithm (EA) to search the space of leaky integrate-and-fire (LIF) neuron networks, in order to identify network connectivities producing significant rhythmic activity at sub-spiking frequencies (i.e., 'bursting-like behavior'). We find that the connectivities of the most-fit LIF networks exhibit a relatively

broad in-degree distribution and a relatively narrow outdegree distribution. We examine the frequencies of connection motifs in the most-fit LIF networks as compared to random networks. In a network of more realistically modeled neurons, the most-fit network connectivities are observed to produce a broader frequency response as compared to that resulting from random network connectivities.

Figure 1 shows the cumulative in- and out-degree distributions of a representative most-fit network, whose connectivity graph is illustrated in the inset. The orange line represents the cumulative in-degree distribution, and the red line the cumulative out-degree distribution. The blue bars represent the expected cumulative distribution (and error bars) for random network connectivities.

Author details

¹Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA 24153, USA. ²Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.

Published: 8 July 2013

doi:10.1186/1471-2202-14-S1-P393

Cite this article as: Robb and Toporikova: **Evolutionary algorithm search** for network connectivities conducive to periodic behavior at subspiking frequencies. *BMC Neuroscience* 2013 14(Suppl 1):P393.

¹Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA 24153, USA

Full list of author information is available at the end of the article

© 2013 Robb and Toporikova; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: robb@roanoke.edu