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Working memory- and anxiety-related behavioral
effects of repeated nicotine as a stressor: the role
of cannabinoid receptors
Tamaki Hayase
Abstract

Background: Like emotional symptoms such as anxiety, modulations in working memory are among the
frequently-reported but controversial psychiatric symptoms associated with nicotine (NC) administration. In the
present study, repeated NC-induced modulations in working memory, along with concurrently-observed anxiety-
related behavioral alterations, were investigated in mice, and compared with the effects of a typical cognition-
impairing stressor, immobilization stress (IM). Furthermore, considering the structural and functional contributions of
brain cannabinoid (CB) receptors in NC-induced psychiatric symptoms including emotional symptoms, the
interactive effects of brain CB receptor ligands (CB ligands) and NC and/or IM on the working memory- and
anxiety-related behaviors were examined.

Results: Statistically significant working memory impairment-like behavioral alterations in the Y-maze test and
anxiety-like behavioral alterations in the elevated plus-maze (EPM) test were observed in the groups of mice treated
with 0.8 mg/kg NC (subcutaneous (s.c.) 0.8 mg/kg treatment, 4 days) and/or IM (10 min treatment, 4 days). In the
group of mice treated with NC plus IM (NC-IM group), an enhancement of the behavioral alterations was observed.
Among the CB type 1 (CB1) antagonist AM 251 (AM), the non-selective CB agonist CP 55,940 (CP), and the CB1
partial agonist/antagonist virodhamine (VD), significant recovering effects were provided by AM (0.2-2.5 mg/kg) and
VD (5 mg/kg) against the working memory impairment-like behaviors, whereas significant anxiolytic-like effects
(recoveries from both attenuated percentage of entries into open arms and attenuated percentage of time spent
on open arms) were provided by VD (1–10 mg/kg) and CP (2 mg/kg) against the anxiety-like behaviors.

Conclusions: Although working memory impairment- and anxiety-like behavioral alterations were commonly
induced in the NC, IM, and NC-IM groups and the therapeutic involvement of CB receptors was shown, there were
discrepancies in the types of effective CB ligands between the working memory- and anxiety-related behaviors. The
differential involvements of CB receptor subtypes and indirectly activated neurotransmitter systems may contribute
to these discrepancies.

Keywords: Nicotine, Immobilization stress, Working memory, Anxiety, Cannabinoid, AM 251, CP 55,940,
virodhamine
Correspondence: thayase@mri.biglobe.ne.jp
Department of Legal Medicine, Kyoto University, Yoshidakonoe-cho,
Sakyo-ku, Kyoto 606-8501, Japan

© 2013 Hayase; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:thayase@mri.biglobe.ne.jp
http://creativecommons.org/licenses/by/2.0


Hayase BMC Neuroscience 2013, 14:20 Page 2 of 11
http://www.biomedcentral.com/1471-2202/14/20
Background
Nicotine (NC) is the substance which sustains the
addictive use of tobacco, and tobacco results in numerous
harmful health effects and continues to be the leading cause
of preventable death [1,2]. It has been reported that
addicted tobacco users suffer from NC-induced cognitive
impairments in some conditions of smoking, as well as
modulated moods such as anxiety- and depression-related
symptoms [3-5]. Cognitive impairments including deficits
in working memory, a process for maintaining temporary
active information [6], have been regarded as being among
the representative symptoms of NC withdrawal observed in
NC-dependent human and rodent models [3,7,8]. Further-
more, the direct neurotoxic effects of NC have also been
reported depending on the treatment conditions such as
dose, period and paradigm, and this neurotoxicity has been
suggested to induce memory impairments, particularly at
earlier periods in development [9-12]. However, in some
clinical and experimental animal studies, cognitive
improvements or absence of any effects have been
demonstrated [13-17]. Negative, positive or no effects of
NC have also been reported against the anxiety-related
behaviors [18-20].
Working memory impairments have been reported for

various stressors such as restraint stress (immobilization
stress) in both humans and rodent models [21-23]. Like
certain NC treatments, such stressors also induce and
exacerbate the anxiety-like behavioral responses in
rodent models [24,25]. Furthermore, it has been
suggested that brain regions such as the medial pre-
frontal cortex, for which NC-induced modulations have
been demonstrated [26,27], are concurrently involved in
the development of stress-induced working memory
impairments and anxiety [28-31]. However, there are
only a few studies investigating the characteristic effects
of NC as a stressor, particularly those on cognitive func-
tion [32,33].
A considerable number of studies have implicated the

relationship between NC and stress. For example, in
some rodent models, repeated or acute stress has been
shown to aggravate the behavioral and neuronal effects
of NC [34-36]. Recent human studies have shown some
directly-exacerbated mood symptoms induced by stress
in smokers [37,38]. However, against the behavioral and
neuronal impairments caused by stress, antagonistic
effects of subsequently administered NC have been
shown in some rodent models [39-41]. With respect to
cognitive function, NC has also been reported to block
stress-induced impairments in several experimental
conditions in rodents [41,42]. Nevertheless, the above-
mentioned neurotoxic effects of NC which could lead to
cognitive dysfunction [10-12] may be correlated with the
possibility that NC and stress augment each other’s un-
favorable effects on cognitive function.
In previous studies, a strong involvement of brain can-
nabinoid (CB) receptors, typically CB type 1 (CB1)
receptors, was reported in the representative emotion-
related behaviors (anxiety- and depression-like behaviors)
induced by NC [18,43,44] and stress [45] in rodents. This is
consistent with the prominent behavioral alterations
induced by NC in CB1 knockout mice [46], and the
overlapping distribution of CB1 receptors and nicotinic
acetylcholine receptors (nAChRs) in some brain regions
which supports functional interactions between these
receptors [47,48]. Furthermore, recent reviews suggest that
CB1 receptors contribute to deficits in memory including
working memory by demonstrating that CB1 agonists im-
pair memory formation and CB1 antagonists reverse these
impairments [49,50]. However, there have been a limited
number of studies on the direct contribution of brain CB
receptors to the memory-related effects of NC [51,52]. The
participation of CB1 receptors has also been reported in
anxiety processes, but the roles of CB1 agonist are contra-
dictory in that both anxiolytic-like and anxiogenic-like
effects have been induced depending on the treatment
conditions [53,54]. Against the NC-induced anxiety-related
behaviors, inconsistent and contradictory effects of CB1
agonists and other CB ligands have also been demonstrated
[18,43].
In the present study, using behavioral tests in mice (Y-

maze and elevated plus-maze (EPM) test), the working
memory- and anxiety-related behavioral alterations
caused by NC were assessed and compared with those
caused by immobilization stress (IM), a typical stressor.
The interactions between the NC- and IM-induced
behavioral effects were also examined. Furthermore,
considering the possible involvement of brain CB
receptors in these NC- and/or IM-induced memory- and
anxiety-related behavioral alterations, the effects of
selected CB ligands (the CB1 antagonist AM 251, the
non-selective CB agonist CP 55,940, and the CB1 partial
agonist/antagonist virodhamine) were evaluated against
these behavioral alterations, as described in previous
studies [43,51,52].

Methods
Animals
Based on previous studies on NC and stressor
treatments [43,55], male ICR mice (80 ± 10 days old)
(Shizuoka Laboratory Animal Center, Hamamatsu,
Japan) were housed in a forced-air facility, which was
maintained at 23°C and 50% relative humidity, with a 12
h/12 h light/dark cycle. The mice were kept separately
in single transparent cages measuring 23.5 × 16.5 × 12
cm, and were allowed water and rodent chow ad libitum.
The experiments described in this report were
conducted in accordance with the “Guidelines for
Animal Experiments” of the institution (updated in
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2007) [56], which are based on the National Institutes
of Health Guide for the Care and Use of Laboratory
Animals, and any pain experienced by the mice was
minimized. These guidelines were approved by the in-
stitutional ethics committee for animal experiments
[56]. All of the observations and evaluations were
performed by a trained observer who was blinded to
the treatment conditions and was not informed of the
treatment conditions in advance. Each experimental
group contained 10 mice.

Drug and stressor treatments
The protocols for the NC and stressor treatments were
determined based on preliminary experiments and previ-
ous studies [43,55,57]. With respect to NC, repeated
subcutaneous (s.c.) doses of NC which caused the emo-
tional behaviors (anxiety- and depression-like behaviors)
effectively in mice [43] were selected: single s.c. doses of
0.3 or 0.8 mg/kg were administered daily for 4 days. NC
(Nacalai Tesque, Inc., Kyoto, Japan) was supplied in
free-base form at 95% purity, and was freshly dissolved
in saline to a volume of 5 ml/kg immediately before each
administration. With respect to the stressor, treatments
using IM, which have also been demonstrated to cause
these emotional behaviors in rodents [44,58], were used.
In the present experiments, repeated IM treatments in
which the effects were almost equivalent to the peak
effects of the NC treatments in preliminary experiments
were selected: 10 min of IM, which was induced by pla-
cing the mouse in a narrow space (diameter about 12
cm) in a vinyl bag with some breathing holes, was
performed once per day for 4 days. Furthermore, to in-
vestigate the interactions between NC and IM, the be-
havioral alterations were examined in the NC plus IM
group (NC-IM group) which received the above s.c. dose
of NC 10 min before the IM treatment once per day for
4 days, according to a previous study [59].
The CB ligands AM 251 (N-(piperidin-1-yl)-5-(4-

iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-
3-carboxamide) (AM), CP 55,940 ((−)-cis-3-[2-hydroxy-
4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)
cyclohexanol) (CP), and virodhamine (O-(2-aminoethyl)-
5Z,8Z,11Z,14Z-eicosatetraenoate) (VD) were purchased
from Tocris Cookson Inc. (Ellisville, Missouri, USA), and
the doses were selected based on previous studies and
preliminary experiments [43,51,52]. For each drug, the
data were collected and shown for those intraperitoneal
(i.p.) doses which induced no toxic behavioral alterations
by themselves at the prescribed time point: 0.2, 1 and
2.5 mg/kg for AM, 0.5, 2 and 5 mg/kg for CP, and 1, 5
and 10 mg/kg for VD. The CB ligands were dissolved
and diluted using a mixed solution of dimethylsulphoxide
(DMSO) plus distilled water, and were administered in a
volume of 5 ml/kg, 60 min before each NC, IM or NC-
IM treatment, considering the previously examined time
course of the effects of CB ligands against the NC- and/
or IM-induced working memory- and anxiety-related
behaviors [43,58]. Since VD was provided in an ethanol
solution (Tocris Cookson Inc.), the ethanol was
evaporated immediately before use under nitrogen gas,
and the residue was re-suspended in the same mixed
DMSO/distilled water solution. In the NC- and IM-only
groups, a mixed vehicle solution of DMSO and distilled
water at the same ratio as the CB ligand solutions was
injected instead of the CB ligands. In the CB ligand-only
groups, the same volume of saline vehicle was injected
instead of the NC or IM treatment. In the control group
without any drug or stressor treatment (control group),
the mixed vehicle solution of DMSO and distilled water
was injected instead of the CB ligands, and then the
same volume of saline vehicle was injected instead of the
NC or IM treatment. The drug and stressor treatments
and each experimental session were performed between
15 and 19 h of the light cycle.

Y-maze test
Based on previous studies [28,60,61], alterations in working
memory-related behaviors were examined in the Y-maze
test using a cardboard apparatus that consisted of three
enclosed arms 30 × 5 × 15 cm (length, width, and height)
which converged on an equilateral triangular center plat-
form (5 × 5 × 5 cm). After the number of spontaneous al-
teration performance (SAP), which was defined as the
number of successive triplet entry performances into each
of the three arms without any repeated entries [28,60,61],
and the total number of entries into arms were evaluated
(8 min test periods), the rate of spontaneous alteration per-
formance (SAP rate) (%) was calculated as a parameter for
the working memory-related behaviors. The total number
of entries into arms was assessed as a parameter
representing locomotor activity [60,61]. Considering the
previous data [58], the evaluations of these parameters
were performed at the 2 h time point after the last NC, IM
or NC-IM treatment. At the beginning of each experimen-
tal session, each mouse was placed in the center platform
of the maze, facing all three arms immediately before the
session [58].

Elevated plus-maze (EPM) test
Based on previous studies [18,43,62-64], alterations in
anxiety-related behaviors were examined in the EPM test
using a cardboard apparatus that consisted of two op-
posite open arms 50 × 10 cm (length and width) and
two enclosed arms 50 × 10 × 30 cm (length, width, and
height), positioned 50 cm from the floor. After the num-
ber of entries into open arms, the time spent on open
arms (sec), and the total number of entries into arms
were evaluated (5 min test periods), the percentage of



Table 1 Total number of entries into arms in experiments
examining the effects of NC and/or IM (experiments
shown in Figures 1 and 2)

Y-maze test (Figure 1) EPM test (Figure 2)

Control group 47.1 ± 8.3 63.2 ± 12.4

NC 0.3 group 51.2 ± 8.4 59.1 ± 12.3

NC 0.8 group 43.7 ± 8.5 58.5 ± 11.9

IM group 44.5 ± 8.2 60.8 ± 12.1

NC 0.3-IM group 49.0 ± 8.6 56.5 ± 12.0

NC 0.8-IM group 43.2 ± 8.6 55.0 ± 11.7
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entries into open arms and the percentage of time spent
on open arms were calculated as parameters for the
anxiety-related behaviors. The total number of entries
into arms was assessed as a parameter representing loco-
motor activity [63]. Considering the previous data [43],
the evaluations of these parameters were performed at
the 2 h time point after the last NC, IM or NC-IM treat-
ment. At the beginning of each experimental session,
each mouse was placed diagonally in the center platform
of the maze, facing both the open and enclosed arms [43].

Statistical analysis
The data were subjected to two-way analysis of variance
(ANOVA) for both effects of NC and/or IM and effects
of the CB ligands [65]. With respect to the experiments
examining the effects of NC and/or IM, a 3 (0.3 mg/kg
NC, 0.8 mg/kg NC versus vehicle) × 2 (IM versus ve-
hicle) factorial design was used for the factors NC × IM
treatment. With respect to the experiments examining
the effects of the CB ligands, a 4 (NC, IM, NC-IM versus
vehicle) × 4 (three doses of each CB ligand versus ve-
hicle) factorial design was used for the factors NC and/
or IM treatment × treatment using each CB ligand. For
pairwise comparisons, Bonferroni post-hoc tests were
performed [65]. All of the comparisons were performed
using a statistical software package (“Excel Statistics”
from Social Survey Research Information Co. Ltd. Inc.,
Tokyo, Japan). P values less than 0.05 were considered
to be statistically significant.

Results
NC- and/or IM-induced working memory-related
behavioral alterations in the Y-maze test
In the 0.8 mg/kg NC, IM and NC-IM groups, at the 2 h
time point, behavioral alterations indicating working mem-
ory impairments, i.e. statistically significantly attenuated
SAP rates (Figure 1), in spite of the absence of significant
changes in the total numbers of entries into arms (Table 1),
were observed in the Y-maze test. This is consistent with
the results of the ANOVA revealing statistically significant
main effects of NC (F(2, 54)=11.02, P<0.001) and IM (F(1,
Figure 1 Working memory-related behavioral alterations (SAP rate (%
(IM) in the Y-maze test. The values at the 2 h time point after the last NC
(n=10 for each group). aa (p<0.01): significant attenuation as compared to
the NC group; cc (p<0.01): significant attenuation as compared to the IM g
54)=34.03, P<0.001). For the NC-IM groups, the SAP rates
were significantly attenuated as compared to the NC and/
or IM groups.
NC- and/or IM-induced anxiety-related behavioral
alterations in the EPM test
In the NC, IM and NC-IM groups, at the 2 h time point,
anxiety-like behavioral alterations, i.e. statistically signifi-
cantly attenuated percentage of entries into open arms
(Figure 2a) and significantly attenuated percentage of
time spent on open arms (Figure 2b), in spite of the ab-
sence of significant changes in the total numbers of en-
tries into arms (Table 1), were observed in the EPM test.
This is consistent with the results of the ANOVA revealing
statistically significant main effects of NC (F(2, 54)=195.21,
P<0.001 for the percentage of entries into open arms
and F(2, 54)=70.18, P<0.001 for the percentage of time
spent on open arms) and IM (F(1, 54)=104.38, P<0.001
for the percentage of entries into open arms and F(1,
54)=46.89, P<0.001 for the percentage of time spent on
open arms). For the NC-IM groups, the parameter
values were significantly attenuated as compared to the
IM group, which is consistent with the results of the
ANOVA revealing significant interactions between the
NC and IM treatments for each parameter value (F(2,
54)=91.17, P<0.001 for the percentage of entries into
open arms and F(2, 54)=18.90, P<0.001 for the percentage
of time spent on open arms).
)) caused by repeated nicotine (NC) and/or immobilization stress
(0.3 or 0.8 mg/kg, s.c.) or IM treatment are shown as means ± S.D.
the control group; bb (p<0.01): significant attenuation as compared to
roup.



Figure 2 Anxiety-related behavioral alterations caused by repeated nicotine (NC) and/or immobilization stress (IM) in the elevated
plus-maze (EPM) test. Data are presented for percentage of entries into open arms (a) and percentage of time spent on open arms (b). The
values at the 2 h time point after the last NC (0.3 or 0.8 mg/kg, s.c.) or IM treatment are shown as means ± S.D. (n=10 for each group). aa
(p<0.01): significant attenuation as compared to the control group; cc (p<0.01): significant attenuation as compared to the IM group.
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Effects of CB ligands against NC (0.8 mg/kg)- and/or IM-
induced working memory-related behavioral alterations
in the Y-maze test
For the 0.8 mg/kg NC, IM and 0.8 mg/kg NC-IM groups,
at the 2 h time point, statistically significant recoveries
from the impairments in working memory-related behav-
ioral alterations, i.e. recoveries from the attenuated SAP
rates, in spite of the absence of significant changes in the
total numbers of entries into arms (Table 2), were observed
in the groups co-treated with AM (Figure 3a). This is
Table 2 Total number of entries into arms in experiments
examining the effects of CB ligands in the Y-maze test
(experiments shown in Figure 3)

(a) AM group Control NC IM NC-IM

Control group 47.1 ± 8.3 43.7 ± 8.5 44.5 ± 8.2 43.2 ± 8.6

AM 0.2 group 46.9 ± 8.3 44.0 ± 8.6 45.1 ± 8.2 43.7 ± 8.6

AM 1 group 46.6 ± 8.3 44.5 ± 8.5 45.5 ± 8.3 44.1 ± 8.6

AM 2.5 group 46.2 ± 8.3 45.0 ± 8.6 46.0 ± 8.3 44.6 ± 8.6

(b) CP group Control NC IM NC-IM

Control group 47.1 ± 8.3 43.7 ± 8.5 44.5 ± 8.2 43.2 ± 8.6

CP 0.5 group 46.8 ± 8.3 43.5 ± 8.6 44.2 ± 8.4 43.0 ± 8.7

CP 2 group 46.5 ± 8.4 43.4 ± 8.6 44.0 ± 8.5 42.8 ± 8.8

CP 5 group 46.1 ± 8.4 43.2 ± 8.7 43.7 ± 8.5 42.6 ± 8.9

(c) VD group Control NC IM NC-IM

Control group 47.1 ± 8.3 43.7 ± 8.5 44.5 ± 8.2 43.2 ± 8.6

VD 1 group 46.8 ± 8.4 43.9 ± 8.6 44.8 ± 8.3 43.5 ± 8.7

VD 5 group 46.5 ± 8.4 44.2 ± 8.7 45.1 ± 8.4 43.7 ± 8.8

VD 10 group 46.2 ± 8.5 44.4 ± 8.8 45.4 ± 8.5 43.9 ± 8.9
consistent with the results of the ANOVA revealing
statistically significant main effects of AM (F(3, 144)=
11.20, P<0.001) for the SAP rate. Furthermore, in the
groups co-treated with 5 mg/kg VD, significant recoveries
from the behavioral alterations were also observed
(Figure 3c), which is consistent with the results of the
ANOVA revealing statistically significant main effects of
VD (F(3, 144)=11.74, P<0.001) for the SAP rate. In each
CB ligand-only group, no significant alterations as
compared to the control group were observed for each par-
ameter value under the present experimental conditions.

Effects of CB ligands against NC (0.8 mg/kg)- and/or IM-
induced anxiety-related behavioral alterations in the EPM
test
For the 0.8 mg/kg NC, IM and 0.8 mg/kg NC-IM groups,
at the 2 h time point, statistically significant recoveries
from the anxiety-like behavioral alterations, i.e. recoveries
from both attenuated percentage of entries into open arms
and attenuated percentage of time spent on open arms, in
spite of the absence of significant changes in the total
numbers of entries into arms (Table 3), were observed in
the groups co-treated with VD (1–10 mg/kg) (Figure 4c).
This is consistent with the results of the ANOVA reveal-
ing statistically significant main effects of VD (F(3, 144)=
205.84, P<0.001 for the percentage of entries into open
arms and F(3, 144)=58.29, P<0.001 for the percentage of
time spent on open arms) and significant interactions of
the VD versus NC and/or IM treatments (F(9, 144)=18.88,
P<0.001 for the percentage of entries into open arms and
F(9, 144)=5.58, P<0.001 for the percentage of time spent



Figure 3 Effects of cannabinoid receptor ligands (CB ligands) on the working memory-related behavioral alterations (SAP rate (%))
caused by repeated nicotine (NC) and/or immobilization stress (IM) in the Y-maze test. Data of SAP rate are presented for groups of mice
co-treated with AM (a), CP (b) and VD (c). The values at the 2 h time point after the last NC (0.8 mg/kg, s.c.) or IM treatment are shown as means
± S.D. (n=10 for each group). The abbreviations of the co-administered CB ligands with each i.p. dose (mg/kg) are noted in the text. The data for
the control, NC, IM, and NC plus IM (NC-IM) groups without any CB ligand co-treatments, as well as the CB ligand-only groups, are also shown. *
(p<0.05), ** (p<0.01): significant attenuation as compared to the control group; + (p<0.05), ++ (p<0.01): significant increase as compared to the
NC, IM, or NC plus IM (NC-IM) group without any CB ligand co-treatments.

Table 3 Total number of entries into arms in experiments
examining the effects of CB ligands in the EPM test
(experiments shown in Figure 4)

(a) AM group Control NC IM NC-IM

Control group 63.2 ± 12.4 58.5 ± 11.9 60.8 ± 12.1 55.0 ± 11.7

AM 0.2 group 62.7 ± 12.6 58.9 ± 12.0 61.1 ± 12.3 55.5 ± 12.1

AM 1 group 62.4 ± 12.9 59.4 ± 12.2 61.5 ± 12.4 56.2 ± 12.4

AM 2.5 group 61.9 ± 13.1 59.9 ± 12.6 61.7 ± 12.7 57.5 ± 12.7

(b) CP group Control NC IM NC-IM

Control group 63.2 ± 12.4 58.5 ± 11.9 60.8 ± 12.1 55.0 ± 11.7

CP 0.5 group 62.6 ± 12.7 58.3 ± 12.0 60.6 ± 12.3 54.8 ± 12.1

CP 2 group 62.1 ± 12.8 58.0 ± 12.1 60.3 ± 12.4 54.7 ± 12.3

CP 5 group 61.5 ± 13.0 57.8 ± 12.2 60.0 ± 12.5 54.6 ± 12.5

(c) VD group Control NC IM NC-IM

Control group 63.2 ± 12.4 58.5 ± 11.9 60.8 ± 12.1 55.0 ± 11.7

VD 1 group 62.6 ± 12.6 58.8 ± 12.1 61.0 ± 12.4 54.9 ± 12.2

VD 5 group 62.3 ± 12.8 59.2 ± 12.2 61.3 ± 12.4 55.9 ± 12.4

VD 10 group 61.7 ± 13.0 59.5 ± 12.6 61.5 ± 12.7 56.9 ± 12.7
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on open arms). Furthermore, in the groups co-treated with
2 mg/kg CP, significant recoveries in both entries into and
time spent on open arms were also observed (Figure 4b),
which is consistent with the results of the ANOVA
revealing statistically significant main effects of CP (F(3,
144)=206.08, P<0.001 for the percentage of entries into
open arms and F(3, 144)=47.32, P<0.001 for the percent-
age of time spent on open arms) and significant
interactions of the CP versus NC and/or IM treatments (F
(9, 144)=20.61, P<0.001 for the percentage of entries into
open arms and F(9, 144)=4.50, P<0.001 for the percentage
of time spent on open arms). In each CB ligand-only
group, no significant alterations as compared to the con-
trol group were observed for each parameter value under
the present experimental conditions.

Discussion
NC- and/or IM-induced working memory- and anxiety-
related behavioral alterations
In the NC group using repeated treatments of 0.8 mg/kg
NC, as well as in the IM group, behavioral alterations sug-
gestive of working memory impairments were observed in
the Y-maze test (attenuated SAP rate) (Figure 1). However,



Figure 4 Effects of cannabinoid receptor ligands (CB ligands) on the anxiety-related behavioral alterations caused by repeated
nicotine (NC) and/or immobilization stress (IM) in the elevated plus-maze (EPM) test. Data of percentages of entries into open arms and
time spent on open arms are presented for groups of mice co-treated with AM (a), CP (b) and VD (c). The values at the 2 h time point after the
last NC (0.8 mg/kg, s.c.) or IM treatment are shown as means ± S.D. (n=10 for each group). The abbreviations of the co-administered CB ligands
with each i.p. dose (mg/kg) are noted in the text. The data for the control, NC, IM, and NC plus IM (NC-IM) groups without any CB ligand co-
treatments, as well as the CB ligand-only groups, are also shown. * (p<0.05), ** (p<0.01): significant attenuation as compared to the control group;
+ (p<0.05), ++ (p<0.01): significant increase as compared to the NC, IM, or NC plus IM (NC-IM) group without any CB ligand co-treatments.
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in the NC group using repeated treatments of 0.3 mg/kg
NC, in spite of the appearance of anxiety-like behavioral
alterations similar to the IM group (Figure 2), the absence
of overt working memory-related behavioral alterations
(a slightly increased SAP rate) was observed in the Y-maze
test (Figure 1). Previous studies have shown that brain
serotonergic and cholinergic systems play crucial roles in
mediating anxiety-related behavioral responses [66-68]. In
addition to these systems, several neuroendocrine res-
ponses (e.g. secretion of corticosterone, norepinephrine,
etc.) have been reported to participate in the control of
anxiety-like behaviors [69,70]. Similar modifications in
these responses were observed between NC and IM [71],
and may contribute to their anxiogenic-like effects in
the present study (Figure 2). On the other hand, the
NC-induced impairments in working memory, unlike
the IM-induced impairments, occurred with a limited
range of doses (Figure 1). It has been reported that
modifications in working memory (both ameliorations
and impairments) can occur due to even minuscule
changes in prefrontal dopamine (DA) levels [72]. There-
fore, the working memory-related behaviors in the NC
groups may be correlated with characteristic but subtle
alterations in nAChR-mediated prefrontal DA release,
which was controlled by specific nAChR subtypes (e.g.
alpha7 nAChRs) [73]. In addition to DA release, the re-
lease of other neurotransmitters such as glutamate has
been implicated in the NC-induced working memory
processes [74].
With respect to the interactions between NC and IM

in the NC-IM group, both NC and IM enhanced each
other’s effects on the working memory- and anxiety-
related behavioral alterations in the Y-maze and EPM
tests. Although the relationship between stressors such
as IM and NC remains controversial as mentioned above
(i.e. “antistress” effects of NC have also been reported
depending on the conditions), synergistic effects like
those observed in previous studies [34-36] were provided
by the NC plus IM treatment in the present ex-
perimental model. An augmented increase in secreted
hypothalamic-pituitary-adrenal (HPA) hormones and/or
immediate early gene expression was demonstrated in
those studies [35,36]. Furthermore, the involvement of
these molecular changes has also been reported for
working memory- and anxiety-related behaviors [75-78].
However, further analyses are needed to elucidate the
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mechanisms underlying these complex interactions be-
tween NC and IM.

Effects of cannabinoid (CB) ligands
Consistent with the previous studies described above
[18,43,49,50,52], the NC- and/or IM-induced working
memory impairment-like behaviors were antagonized by
the CB1 antagonist AM (Figure 3a), and the anxiety-like
behaviors were antagonized by the CB agonist CP
(Figure 4b). Furthermore, VD, a mixed CB1 ligand with
partial agonist plus antagonist activities [79], provided
recovering effects against the impaired behaviors related
to both working memory and anxiety (Figure 3c, 4c).
Similarities in some neuronal responses such as prefrontal
DA responses have been observed in the immunohisto-
chemical studies between the effects of NC, stressors, and
CB1 agonists [21,80-82]. These similarities may result in
the CB1 antagonist-induced recoveries in the working
memory-related behavioral alterations. On the other hand,
against the NC- and/or IM-induced anxiety-related be-
havioral alterations, only the CB1 ligands acting at least
partially as agonists exerted any anxiolytic-like effects.
Although the mechanisms underlying these discrepancies
in the effects of CB ligands have not been elucidated,
anxiolytic-like effects of CB agonists have been shown
under several different conditions [83,84]. Furthermore,
certain doses of CB1 agonists have been reported to be
able to activate the neurotransmission systems related to
anti-anxiety (e.g. GABAergic and serotonergic systems) at
the molecular level [53,83,84]. Therefore, it could be
predicted that the antagonistic effects against the anxiety-
like behaviors were provided at least indirectly by way of
agonistic activity on CB1 receptors.
Against both working memory- and anxiety-related

behavioral alterations, the CB1 partial agonist/antagonist
VD exerted some recovering effects (Figure 3c, 4c).
These recovering effects were observed equally in the
NC, IM and NC-IM groups. For the behavioral
alterations related to working memory impairments,
the recovering effects of VD did not exceed those of
the CB1 antagonist AM, which could be predicted
considering the partial CB1 agonistic effects of VD. On
the other hand, for the behavioral alterations related to
anxiety, the recovering effects of VD exceeded those of
the CB agonist CP. These results could not be predicted
considering the above-mentioned anxiolytic-like effects
of the CB1 agonists without any antagonistic effects.
However, contrary to the present results, there are
experimental data showing anxiogenic-like or anti-
anxiolytic effects provided by high doses of CB agonists
including CP [53,54,85]. The involvement of an abnor-
mal release of anxiety-related neurotransmitters has
been reported for those effects [53,54]. Unlike CP, VD
possesses CB1 antagonistic potential for counteracting
anti-anxiolytic effects as an agonist (high doses), and
thus may function as an effective anxiolytic-like ligand.
Furthermore, recent studies suggest the possibility that
CB2 receptors, the CB receptors initially defined as per-
ipheral receptors, may contribute to anti-anxiolytic
effects [86,87]. CB2 receptors are distributed over several
regions of the central nervous system [87] and the non-
selective CB agonist CP seems to provide agonistic
effects as well as against CB1 receptors. With respect to
the effects of AM and VD, agonistic effects on the
GPR55 receptor subtype, a newly-identified G protein
coupled CB receptor subtype, have also been reported
[88-91]. Although the behavioral roles of GPR55 receptors
have not been investigated, it is possible that GPR55
distributed in the brain [89] may participate in cognitive
processes such as working memory. Furthermore, in vitro
studies demonstrated that VD acted as a partial agonist on
GPR55 receptors and provided antagonistic effects at high
concentrations [91], whereas only full agonistic effects have
been reported for AM [88-90]. On the other hand, on CB1
receptors, both VD and AM provided antagonistic effects
at high concentrations [79,89]. These characteristic effects
of the partial agonist/antagonist VD as a GPR55
antagonist at high concentrations may be correlated
with its limited and non-dose-dependent ameliorating
effects against working memory impairments, i.e. only
5 mg/kg VD, but not a lower (1 mg/kg) or higher (10
mg/kg) dose, was effective. In addition to GPR55, the
existence of other yet-to-be-cloned CB receptors has
been suggested in memory-related brain regions such
as the hippocampus [92]. There may be some con-
tributions of these receptors to the AM- and VD-
derived attenuating effects against the NC- and/or
IM-induced working memory impairments.
Conclusions
The present study demonstrated working memory
impairment- and anxiety-like behaviors induced by NC,
IM and NC-IM treatments in mice. Mutual synergistic
effects for NC plus IM were observed for both types of
behavioral alterations. In the present study, the involve-
ment of endocannabinoid system was also shown in the
processes of working memory and anxiety. However,
between the working memory- and anxiety-related be-
havioral alterations, discrepancies in the types of effect-
ive CB ligands were observed: the CB1 antagonist AM
was the most effective against the working memory
impairment-related behaviors, whereas the CB1 partial
agonist/antagonist VD was the most effective against
the anxiety-related behaviors. Since the presence of
new CB receptor subtypes such as GPR55 receptors
has been clarified recently and the interactions with
each CB ligand have been suggested, further research
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into the therapeutic contributions of each CB recep-
tor subtype is expected.
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