POSTER PRESENTATION

Open Access

Low-frequency EEG correlates of fMRI in the resting state

Joshua K Grooms^{1*}, Garth J Thompson¹, Hillary Schwarb², Eric Schumacher², Regina Schmidt³, Charles Epstein⁴, Shella D Keilholz¹

From Twenty First Annual Computational Neuroscience Meeting: CNS*2012 Decatur, GA, USA. 21-26 July 2012

Recently, researchers have taken interest in simultaneously recording electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to explore the relationship between the blood oxygen level dependent (BOLD) signal and underlying neuronal activity[1]. Many studies investigate BOLD signal relationship to high-pass (> 1 Hz) filtered EEG data, but little work on has been done on slow (< 1Hz) cortical potential correlates of fMRI because low frequency EEG data are commonly discarded as drift artifacts[1]. Nevertheless, much slower (< 0.1 Hz) components of the fMRI signal are used to establish functional resting state networks (RSNs)

* Correspondence: josh.grooms@gatech.edu

¹Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA 30306, USA

Full list of author information is available at the end of the article

© 2012 Grooms et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

within the brain[2]. In this study, five subjects underwent simultaneous recording of EEG and fMRI in a resting state, lying quietly with eyes open. Two ten minute scans were acquired per subject over the entire brain (TR=2 seconds, TE=30 milliseconds, 64x64 voxels, 33 slices). After standard functional connectivity preprocessing[3], the BOLD signals were band-pass filtered between 0.01 -0.08 Hz. EEG data were obtained from a 64-channel electrode montage in a standard International 10-10 System configuration. Each signal was then filtered between 0.01 - 0.08 Hz and de-noised of scanner and ballistocardiographic artifacts. Channels were clustered using k-means and each cluster's signal was calculated in order to be regressed from its respective electrodes. All EEG data were resampled to 0.5 Hz for comparison with functional data. Pearson correlation was then computed between pairs of individual EEG electrodes. Two electrode channels (AF3 and PO8) were chosen to be crosscorrelated with BOLD signals at various time shifts between -10 - 20 seconds, due to their consistent presence in anticorrelated clusters from the paired EEG clustering. This was performed both with and without EEG cluster signal removal, the former allowing better visualization of correlation results. Finally, all subjects' electrode-specific EEG-fMRI correlations were averaged together and two maps of correlation were produced (Figure 1). These maps were corrected for multiple comparisons using a false discovery rate of 0.05, assuming a normal distribution of correlation values. The relationship between BOLD signals and slow cortical potentials can be observed over the sensorimotor cortex for both AF3 and PO8, demonstrating a correlation between EEG and a known RSN[2]. The time delays in correlation may also be related to previously observed BOLD signal propagations[3].

Author details

¹Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA 30306, USA. ²School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA. ³Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA. ⁴Neurology, Emory University Hospital, Atlanta, GA 30322, USA.

Published: 16 July 2012

References

- 1. Leopold DA, Maier A: Ongoing physiological processes in the cerebral cortex. *NeuroImage* 2011.
- Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences in the United States of America 2005, 102(27):9673-9678.
- Majeed W, Magnuson M, Hasenkamp W, Schwarb H, Schumacher EH, Barsalou L, Keilholz SD: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. *NeuroImage* 2011, 54:1140-1150.

doi:10.1186/1471-2202-13-S1-P107

Cite this article as: Grooms *et al*: Low-frequency EEG correlates of fMRI in the resting state. *BMC Neuroscience* 2012 13(Suppl 1):P107.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central