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action potential generation in differentiated
NG108-15 cells
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Abstract

Background: The generation of action potential is required for stimulus-evoked neurotransmitter release in most
neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of
the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced
changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were
investigated in NG108-15 cells.

Results: Whole-cell patch-clamp results showed that differentiation (9 days) didn’t change cell membrane
excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation
in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was
also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential,
Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was
increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the
expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly,
the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential.

Conclusion: Differentiation induces expression of voltage-gated Na+ channels and action potential generation in
NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential
generation.
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Background
Exploring cell molecular and electrophysiological prop-
erties such as expression and current of ion channels,
and action potentials is very important for understand-
ing the physiological and pathophysiological functions of
the excitable cells including neurons, muscle cells, and
endocrine cells. Although acute-isolated primary cell is
the optimum choice for pursuing these measurements,
cell lines are also served as an appropriate tool for
the cell molecular and electrophysiological studies, be-
cause cell lines provide the advantage of enough
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reproduction in any medium, provided the or
homogeneous cells that can make the investigation
under easily controlled conditions.
NG108-15 cell line is a hybrid cell line formed by the

fusion of mouse N18TG2 neuroblastoma cells and rat C6-
BU-1 glioma cells [1]. After differentiation, this cell line pre-
sents neurite extension, forms synapses, and develops the
ultimate neural property of acetylcholine release and spe-
cific activities of choline acetyltransferase and acetylcholin-
esterase [2-4]. Therefore, many studies used NG108-15
cells as the cholinergic cells to investigating electrophysio-
logical kinetics and cell functions of neurons [4-12].
Action potential is an important physiological feature of

the excitable cells. In most vertebrate neurons, action po-
tential production is required for neuronal excitation and
stimulus-evoked neurotransmitter release, which are
involved in neuron-to-neuron communication [13,14]. Al-
though action potentials are generated by voltage-gated
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Na+, K+, and Ca++ channels existed in the cell membrane,
the influx of Na+ ions through voltage-gated Na+ chan-
nels plays the most important role in the initiation and
propagation of action potential [15,16]. In order to clarify
the relationship between action potential generation and
sodium channel density, in this study, we investigated the
time-course for differentiation-induced changes of mem-
brane excitability and Na+ channels in NG108-15 cells.

Results
Differentiated NG108-15 cells bear cholinergic neuronal
property
As a cholinergic neuron marker, choline acetyltransfer-
ase (ChAT) was detected in NG108-15 cells by immuno-
fluorescence staining. In the undifferentiated cells, there
were a few ChAT-positive cells and very low-level ChAT
images in the ChAT-positive cells (Figure 1). After 21
days of differentiation, all cells were ChAT positive and
presented high-level ChAT images (Figure 1).

Differentiation-induced action potential in NG108-15 cells
Using whole-cell current-clamp recording method, the
response of cell membrane to current injections was
measured in undifferentiated and differentiated NG108-
15 cells (Figure 2 and Table 1). In undifferentiated cells
(day0), the resting membrane potential (RMP) was −34.9
± 1.4 mV (n=22), and current injection (100 pA)
induced a small depolarization. However, the action po-
tential didn’t appear in undifferentiated cells.
After 9 days of differentiation, the RMP was increased

to −43.2 ± 1.5 mV (n= 15; P < 0.05 vs. Day 0), and the
Figure 1 Expression of choline acetyltransferase (ChAT, a cholinergic
after 21 days of differentiation, measured by immunofluorescence sta
depolarization amplitude was increased to 45 ± 2.9 mV
(P < 0.05 vs. Day 0), compared with those in undifferen-
tiated state. However, current injection (100 pA) didn’t
yet induce the action potential in the cells with 9 days of
differentiation.
After 21 days of differentiation, 45.5% of cells (25/55)

had the ability to generate the action potential upon the
current injection (100 pA), and the average frequency of
action potentials was 6.7 ± 1.1 spikes/s (Figure 2). A Na+

channel antagonist tetrodotoxin (TTX, 1μM) could to-
tally block the generation of action potential, indicating
that differentiation-induced action potential is Na+ chan-
nel dependent. The current threshold-inducing action
potential was 48.2 ± 2.7 pA in the cells with action po-
tential. We also found that the cells with action potential
had a more negative RMP of −56.1 ± 1.6 mV, compared
to day 0, day 9, and day 21 without action potential cells
(Table 1). On the contrary, the other cells (54.5%, 30/55)
didn’t generate the action potential after 21 days of dif-
ferentiation. The cells without action potential presented
similar electrical characteristics to those cells with 9 days
of differentiation (Table 1).
Additionally, we also measured the generation of the ac-

tion potential after 35 days of differentiation. After 35 days
of differentiation, there was no significant difference on
the ratio of cells with/without action potential (data not
shown), compared with that after 21 days of differentiation.

Changes of Na+ currents induced by differentiation
After the recording of the action potential, Na+ currents
were recorded under voltage-clamp mode. Using this
neuronal marker) in NG108-15 cells at undifferentiated state or
ining.



Figure 2 Alterations in membrane excitability of NG108-15 cells induced by differentiation. A: Representative traces show the membrane
potential response to a depolarizing current injection (100 pA, 1 sec) under whole-cell current-clamp configuration. B: Action potential (AP)
frequency in undifferentiated (day0) and differentiated NG108-15 cells. TTX: tetrodotoxin. Data are means ± SEM, n is the number of cells.
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method, the Na+ currents and action potential were
recorded in the same cell. In the undifferentiated cells,
the Na+ current density was −29.2 ± 3 pA/pF (n= 10).
After 9 days of differentiation, the Na+ current density
of NG108-15 cells increased to −40.8 ± 3.3 pA/pF
(n=10, p > 0.05 vs. undifferentiated cells). After 21 days
of differentiation, the Na+ current density was not sig-
nificantly altered in the cells without action potential
(−44.8 ± 4.7 pA/pF; n=10), compared to that in the cells
with 9 days of differentiation. However, the Na+ current
density was significantly increased in the cells with ac-
tion potential (−113.5 ± 12.4 pA/pF, n=10; p < 0.05 vs.
day 0, day 9, and day 21 without action potential cells;
Figure 3). The Na+ current density detected in undiffer-
entiated and differentiated cells was completely inhibited
by 1 μM TTX (data not shown), suggesting that only
TTX-sensitive Na+ channels exist in NG108-15 cells.

Expression of Na+ channel protein induced by
differentiation
It has been reported that only Nav1.7 (a primary TTX-
sensitive Na+ channels) expression is increased after
Table 1 Differentiation-induced changes in membrane proper

RMP Vmax

n (mv) (mV/ms)

Day 0 22 −34.9 ± 1.4 20.1 ± 0.9

Day 9 15 −43.2 ± 1.5* 23.2 ± 1.2

Day 21

Without AP 30 −45.4 ± 2.1* 28.5 ± 3.5*

Day 21

with AP 25 −56.1 ± 1.6*#$ 136.1 ± 13.7*

RMP resting membrane potential; Vmax maximum rate of depolarization of action po
vs. 0 day of differentiation (day 0, undifferentiated cells); #P < 0.05 vs. cells after 9 d
(day 21) without AP.
NG108-15 cell differentiation [9]. Therefore, we used west-
ern blot analysis to measure the expression of Nav1.7 pro-
tein in undifferentiated and differentiated NG108-15 cells.
As shown in Figure 4, the protein level of Nav1.7 increased
after 9 days of differentiation and further enhanced after
21 days of differentiation. We couldn’t compare the ex-
pression of Nav1.7 protein between the cells with and with-
out action potential due to technical limitation.

Expression of Nav1.7 mRNA induced by differentiation
Using single-cell real-time PCR, we measured the Nav1.7
mRNA in undifferentiated and differentiated NG108-15
cells. After 21 days of differentiation, expression of
Nav1.7 mRNA significantly increased in NG108-15 cells.
More importantly, the level of Nav1.7 mRNA in the cells
with action potential was higher than that in the cells
without action potential (Figure 5).

Relationships among Nav1.7 mRNA, Na+ current density,
and action potential frequency
Using linear regression analysis, we found that there
were correlations among Nav1.7 mRNA, Na+ current
ties of NG108-15 cells

Depolarization amplitude Current threshold
(mV) (pA)

32.1 ± 1.6 n/a

45.0 ± 2.9* n/a

46.1 ± 4.7* n/a

#$ 79.4 ± 7.4*#$ 48.2 ± 2.7

tential (AP). Data are means ± SEM, n is the number of cells studied. *P < 0.05
ays of differentiation (day 9); $P < 0.05 vs. cells after 21 days of differentiation



Figure 3 Original recording (A), current–voltage (I-V) curve (B), and mean data (C) of the voltage-gated Na+ currents in
undifferentiated and differentiated NG108-15 cells, measured by whole-cell voltage-clamp technique. Data are means ± SEM, n = 10 cells
in each group. *P < 0.05 vs. cells after 21days of differentiation with action potential (AP).
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density, and action potential frequency (Figure 6). Add-
itionally, we also determined that 77 pA/pF (Na+ current
density) was required to induce the generation of an ac-
tion potential in NG108-15 cells.

Discussion
Previous studies have found that during the differenti-
ation of NG108-15 cells, dibutyryl cyclic AMP is a key
factor in the culture medium, which can stimulate
NG108-15 cells to present a morphological alterations
(such as the increase in cell diameter, neurite length, and
number of clear vesicles) and to develop the cholinergic
neuronal properties including stimulus-dependent acetyl-
choline release and activities of ChAT and acetylcholin-
esterase [2-4]. Our present study demonstrated that
ChAT, a cholinergic neuron marker, was expressed in all
differentiated NG108-15 cells (Figure 1). Based on these
results, NG108-15 cell line is considered to be a suitable
cell line for studying cholinergic neuronal function.
Although many studies focused on the measurement

of ion channels (such as voltage-gated Na+, Ca++, and K+

channels) in NG108-15 cells [5-10,17-20], a few studies
recorded the action potential and obtained inconsistent
results [21-23]. In Kowtha’s study, the differentiated-cell
excitability is still lower under a very high current-
stimulation (30 nA) [22]. Extracellularly added NH4Cl
increased the cell excitability via an elevation in intracel-
lular pH [22]. Doebler reported that a high current-
stimulation (700 pA, 75 ms) induced the generation of
action potential after NG108-15 cells were differentiated



Figure 4 Representative (A) and summary (B) data for the
protein expression of Nav1.7 in undifferentiated and
differentiated NG108-15 cells, measured by western blot
analysis. Data are means ± SEM, n = 3 in each time-point. *P < 0.05
vs. 0 day of differentiation (undifferentiated cells), #P < 0.05 vs. 9
days of differentiation.
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over 5 days [21]. Usually, action potential recording needs
to be kept a long time for measuring the cell excitability
(including action potential frequency and current
threshold-inducing action potential) and investigating the
Figure 5 Representative (A) and summary (B) data for the mRNA exp
cells; quantified by single-cell real-time PCR, RPL19 (a housekeeping
the number of cells. *P < 0.05 vs. 0 day of differentiation (undifferentiated
effect of drugs. However, the high current-stimulation can
induce the cell damage and shorten the cell recording
time. Additionally, a current stimulation less than 300 pA
is normally used for action potential recording in isolated
primary neuron cells. In present study, therefore, we
chose a low current stimulation (100 pA) to investigate
the time course for differentiation-induced alteration of
cell excitability in NG108-15 cells. We observed that
short-time differentiation (9 days) didn’t change the cell
excitability, compared with undifferentiated condition
(Figure 2). Moreover, only about a half of cells generated
action potentials after 3 week differentiation (Figure 2). A
similar result was found in Ma’s study [23]. This research
group considered there are two types of the cells after
long-time differentiation: type 1 neuron-like cells with
neuronal morphologies and excitable membrane proper-
ties, and type 2 cells with a proliferative property [23].
It is well known that Na+ currents mainly mediate the

upstroke of action potential [15,24]. However, it is un-
clear how much functional Na+ channel and Na+ current
density are required for the generation of neuronal ac-
tion potential in NG108-15 cells. We recorded the ac-
tion potential and voltage-gated Na+ currents in the
ression of Nav1.7 in undifferentiated and differentiated NG108-15
gene) was used as the internal control. Data are means ± SEM, n is
cells), #P < 0.05 vs. cells after 21 days of differentiation without AP.



Figure 6 Correlation analyses among Nav1.7 mRNA, Na+

current density, and action potential frequency in NG108-15
cells. N=23 cells including 7 undifferentiated cells and 16 cells after
21-day differentiation without or with action potential. R is the
correlation coefficient.
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same cell. Using this technique, we found that
differentiation-induced mild increase of Na+ currents
didn’t trigger the generation of action potential (such as
day 9 and day 21 without AP groups, Figure 3), and a sig-
nificant increase of Na+ currents is needed for generating
action potentials in differentiated NG108-15 cells (such as
day 21 with AP group, Figure 3). The data from linear re-
gression analysis (Figure 6) suggest that differentiation-
enhanced Na+ current density should reach a high level
(77 pA/pF) close to the current threshold for generating
action potentials in NG108-15 cells, which is also
supported by western blot and single-cell real-time PCR
data (Figures 4 and 5). Similarly, a previous study has
demonstrated that action potential generation requires a
high Na+ channel density in the axon initial segment of
cortical layer 5 pyramidal neurons [24].
There is no direct evidence showing the involvement

of Nav channels in acetylcholine release from cholinergic
neurons. However, many studies have shown that Ca++

influx through the voltage-gated Ca++ channels is a key
trigger for the release of neurotransmitters including
acetylcholine [25-31]. Voltage-gated Ca++ channels are
activated and intracellular Ca++ level is increased when
the cell membrane is depolarized by an action potential
[32-34]. Therefore, Na+ channel-initiated action poten-
tial might link to the acetylcholine release through trig-
gering Ca++ influx.
Our recent study has shown that differentiation also

induces the alteration of voltage-gated Ca++ channel
mRNA, protein and current in NG108-15 cells [10].
Additionally, 0.1 mM Cd++ (a common voltage-gated
Ca++ channel blocker) reduces the action potential fre-
quency and increases the current threshold-inducing ac-
tion potential in differentiated NG108-15 cells (data not
shown). It is possible that enhanced expression of
voltage-gated Ca++ channels also contributes to action
potential generation in NG108-15 cells.
In addition to fasting activating and inactivating Na+

current, the persistent Na+ current, also known as non-
inactivating Na+ current are recorded in many types of
excitable neurons [35,36]. Wu, et al. reported that the
non-inactivating Na+ current was characterized in differ-
entiated NG108-15 cells, and this type of Na+ current
might facilitate neuronal hyper-excitability [37]. However,
the origin of the non-inactivating Na+ current is unclear.
Three hypotheses have been proposed: first, the non-
inactivating Na+ current originates from the window
current; second, the non-inactivating Na+ current origi-
nates from the mutation in the inactivation properties of
the same channels that generate the fasting activating and
inactivating Na+ currents; third, the non-inactivating Na+

current originates from a special subtype of Na+ channels
[35,36]. Based on these uncertainties, we did not address
the correlation between non-inactivating Na+ current and
action potential in the present study.
Although established neuronal cell lines including

NG108-15 cells may provide some valuable data, ex-
trapolation to the original neuronal cells should be cau-
tiously used because an endless debate for the neuronal
cell lines is still presented in respect of genetic, differen-
tiated, biochemical, and physiological aspects.

Conclusion
It is the first time to investigate the time course for
differentiation-induced changes in cell excitability and
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voltage-gated Na+ channels in NG108-15 cells using
electrophysiological and molecular techniques. Differen-
tiation time-dependently enhances the expression and
current density of voltage-gated Na+ channels and
induces about a half of cells to generate action potential.
These results suggest that action potential is generated
in differentiated NG108-15 cells with a high voltage-
gated Na+ channel density.

Methods
Cell culture and differentiation
The neuroblastoma × glioma NG108-15 cell line was
obtained from the American Type Culture Collection
(ATCC, Manassas, VA). NG108-15 cells were cultured as
previously described [10]. Briefly, cells were cultured at a
density of 1 × 104 cells/cm2 on either a 60 mm plastic
dish or a 35 mm plastic dish containing glass cover slips
in Dulbecco’s modified Eagle’s medium (DMEM) with
10% fetal bovine serum. Differentiation was induced by
culturing the cells in a serum-free medium consisting
of DMEM, N2 supplements, 1 mM dibutyryl cyclic
AMP, and antibiotics. Cells were used for experiments
after 0–21 days of differentiation.

Immunofluorescent staining
NG108-15 cells plated onto coverslips were fixed with
4% paraformaldehyde for 10 min at 4°C and then
blocked with 10% normal goat serum for 1 h at room
temperature. The NG108-15 cells were incubated with
primary antibody against choline acetyltransferase
(ChAT; Novus Biologicals, Littleton, CO) overnight at
4°C. Then, the NG108-15 cells were incubated with
fluorescence-conjugated secondary antibody (Santa Cruz
Biotechnology, Santa Cruz, CA) for 1 h at room
temperature. Finally, the NG108-15 cells were observed
under a Leica fluorescent microscope with correspond-
ing filter. Pictures were captured by a digital camera sys-
tem. No staining was seen when PBS was used instead
of the primary antibody in the above procedure.

Recording of action potentials and sodium currents
Action potential and Na+ currents were recorded by the
whole-cell patch-clamp technique using Axonpatch
200B patch-clamp amplifier (Axon Instruments, Sunny-
vale, CA).
Action potential was recorded in the current-clamp

mode. Resistance of the patch pipette was 1–2 MΩ
when filled with (in mM) 105 K-aspartate, 20 KCl, 1
CaCl2, 5 MgATP, 10 HEPES, 10 EGTA, and 25 glucose,
pH 7.2 with KOH. RNase inhibitor was added to the
pipette solution to prevent the degradation of mRNA.
The extracellular solution consisted of (in mM): 140
NaCl, 5.4 KCl, 0.5 MgCl2, 2.5 CaCl2, 5.5 HEPES, 11 glu-
cose, and 10 sucrose, pH 7.4 with NaOH. Action
potential was elicited by a ramp current injection of 0–
300 pA to measure the current threshold-inducing ac-
tion potential. The clamp-current at generation of the
first action potential is defined as the current threshold-
inducing action potential. Frequency of action potentials
was measured in a 1second current clamp (100 pA).
To record Na+ currents after action potential record-

ing in the same cell, the extracellular solution was chan-
ged to a solution consisting of (in mM): 70 NaCl, 60
choline-Cl, 10 CsCl, 10 TEA-Cl, 2 4-AP, 0.1CdCl2, 4
MgCl2, 10 HEPES, and 10 glucose, pH 7.4 with CsOH.
Junction potential was calculated to be +9.7 mV using
pClamp 10.2 software, and all values of membrane po-
tential given throughout were corrected using this value.
Series resistance of 5–10 MΩ was electronically com-
pensated 80-90%. Current traces were sampled at 10
kHz and filtered at 5 kHz. Na+ currents were evoked
from a holding potential of −90 mV by stepping to vol-
tages between −80 and +60 mV in 10 mV increment for
20 ms. 1 μM tetrodotoxin was used to block Na+ cur-
rents. Peak currents were measured for each test poten-
tial and current density was calculated by dividing peak
current by cell membrane capacitance. pClamp 10.2 pro-
gram (Axon Instruments) was used for data acquisition
and analysis. All experiments were done at room
temperature. After the recording of Na+ currents, the
cell was also used for single-cell real-time RT-PCR
experiments.

Western blot
Western blot was performed as described previously
[38]. The protein of NG108-15 cell lysates was extracted
with the lysing buffer (10 mM Tris, 1 mM EDTA, 1%
SDS, pH 7.4) plus protease inhibitor cocktail (Sigma-
Aldrich, 100 μl/ml). Total protein concentration was
determined using a bicinchoninic acid protein assay kit
(Pierce, Rockford, IL). Equal amounts of the protein
samples were loaded and then separated on a 10% so-
dium dodecyl sulfate (SDS)-polyacrylamide gel. The pro-
teins of these samples were electrophoretically
transferred to PVDF membrane. The membrane was
probed with mouse anti-Nav1.7 antibody (NeuroMab,
Davis, CA) and a peroxidase-conjugated goat anti-mouse
secondary antibody (Pierce). The signal was detected
using enhanced chemiluminescence substrate (Pierce)
and the bands were analyzed using UVP bioimaging sys-
tem. The membrane was reprobed with mouse anti-
GAPDH antibody (Santa Cruz Biotechnology, Santa
Cruz, CA) and normalizing target protein intensity to
that of GAPDH.

Single-cell real-time RT-PCR
Single-cell real-time RT-PCR was performed as
described previously [10,39]. After the recording of Na+
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currents, the cellular content was obtained by applying
suction on patch pipette and expelled into a 0.2-ml PCR
tube containing following reagents: 5 μl volume consist-
ing of 1 μl 5X lysis buffer (100 μl 5X lysis buffer consist-
ing of 20 μl 5X M-MLV reverse transcriptase buffer
(Invitrogen, Carlsbad, CA), 5 μl Nonidet P-40, 75 μl
RNase-free water), 0.5 μl RNA guard Mix (100 μl con-
sisting of 20 μl 5X M-MLV reverse transcriptase buffer,
20 μl RNase inhibitor, 60 μl RNase-free water), and 3.5
μl RNase-free water, and kept at −80°C until reverse
transcription (RT) was performed.
After thawing was completed, the content of each tube

(5 μl) was added to the PCR reaction containing 4 μl
iScript Reaction Mix (Bio-Rad, Hercules, CA), 1 μl iScript
Reverse Transcriptase (Bio-Rad), and 10 μl RNase-free
water and then was reversely transcribed at 42°C for 30
min. The cDNA was then stored at −80°C.
There were two rounds of amplification for PCR. The

sequences of the primers used in the present study were as
follows. Nav1.7 (Genbank accession number NM_018852)
forward: 50-GTGGTGTCGCTTGTTGATGG-30, reverse:
50-CCTTTGCCTGAGATGTGGGT-30, internal: 50-CCC-
CAATGGACAGCTTCTTC-30; RPL19 (Genbank acces-
sion number NM_009078, as a control) forward: 50-
CTGAAGGTCAAAGGGAATGTGTTC-30, reverse: 50-
TTCGTGCTTCCTTGGTCT-TAGAC-30, internal: 50-
TGCGAGCCTCAGCCTGGTCAGCC-30. The first round
of amplification used forward and reverse primers. The
second round of amplification used one of the primers of
the first round and a new internal primer. PCR reaction
was performed in a 25-μl volume containing 12.5 μl iQ
SYBR Green Supermix (Bio-Rad), 200 nM (in the first
round) or 300 nM (in the second round) of each primer.
In the first round of amplification, a 1 μl aliquot of the
RT product was used and then 2.5 μl of the first-round
product was used in the second round of amplification.
Negative control samples were taken from the aspiration
buffer without cells. The cDNA was amplified by real-time
quantitative PCR with an ABI StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA). After
10 min of denaturation at 94°C, the amplification was per-
formed with 20 (in the first round) or 40 (in the second
round) thermal cycles of 94°C for 1 min, 56°C for 2 min,
72°C for 2 min, and a final extension at 72°C for 5 min.
For quantification, Nav1.7 gene was normalized to the
expressed housekeeping gene RPL19. The data were ana-
lyzed by the 2-ΔΔCt method [40].

Data analysis
All data are presented as means ± SEM. SigmaStat 3.5
was used for data analysis. A one-way ANOVA, with a
Bonferroni procedure for post hoc was used in compari-
sons of cell membrane properties, Na+ currents, and
mRNA and protein of Nav 1.7. All data were confirmed
by the Kolmogorov-Smirnov test to fit reasonably within
normal distribution and equal variance was confirmed
by the Levene test. Statistical significance was accepted
when P < 0.05.
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