POSTER PRESENTATION

Open Access

Neurodynamical model of confidence decision-making in LIP

Andrea Insabato^{1*}, Mario Pannunzi¹, Gustavo Deco^{1,2}

From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011

Decision confidence, the degree of certainty to which a subject believes his choice is correct, is an emerging subject in neuroscience. On one hand it is a fundamental component of our subjective conscious experience. On the other hand it is crucial to many cognitive functions like action planning and learning. In the past the speed accuracy trade-off in decision-making has received much attention by the scientific community since it is a key aspect of simple decisions, used in experimental conditions. In the context of complex more "real" environments, where different strategies can be applied, besides speed and accuracy, *flexibility* also become very important. Flexibility is the ability of an agent to explore and use alternative strategies in order to reach the goals. In a more simple view flexibility is the ability of taking into account more options in a decision process. The selection between alternative strategies can be regulated by evaluating the confidence in a choice. If the confidence is too low and other strategies are available, then the subject will try an alternative. Therefore evaluating the confidence in a choice can be particularly helpful for agents in complex dynamic environments.

There is only few evidence about neural mechanisms underlying decision confidence [1][2]. New neurophysiological evidence about decision confidence comes from a recent study [3], that tested the ability of monkeys to choose, in a two choice random dot motion (RDM) task, between standard targets and a "sure" target appearing later. This target represents a small but certain reward. Recordings from LIP neurons during the behavioral task show a dependence of firing rate upon certainty in the decision.

We propose a theory about neuronal mechanisms of flexibility that can account for LIP data. The theory is

* Correspondence: andrea.insabato@upf.edu

implemented in a network model composed of integrate-and-fire neurons with biologically detailed synapses, including AMPA, NDMA and GABA receptors [4].

Our proposal is that, as reported by [2], the confidence is implicitly encoded in the firing-rate of the decision neurons, but there is no need for a reading out of this information. In our model the RDM stimulus generates a competition between two pools of decision neurons, a third pool remains silent until it is turned on by the third target presentation. When all three pools receive task salient stimulus they compete until a decision is reached. In this way the information about confidence in the first decision, stored in the firing-rate, is directly used into the network without the need of an other reading network [2].

We analyze the property of the network in a reduced mean-field model. The first bifurcation in the space of input is connected with speed accuracy trade-off [5]. Our finding is that the proximity with a second bifurcation enhances flexibility, raising the probability of alternative strategies.

Acknowledgements

This work was supported by the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement number 214728-2.

Author details

¹Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain. ²ICREA, Barcelona, Spain.

Published: 18 July 2011

References

- Kepecs A, Uchida N, Zariwala HA, Mainen ZF: Neural correlates, computation and behavioural impact of decision confidence. *Nature* 2008, 455:227-231.
- Insabato A, Pannunzi M, Rolls ET, Deco G: Confidence related decision making. J Neurophysiol 2010, 104:539-547.
- Kiani R, Shadlen MN: Representation of confidence associated with a decision by neurons in the parietal cortex. Science 2009, 324:759-764.

© 2011 Insabato et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain Full list of author information is available at the end of the article

- Wang XJ: Probabilistic decision making by slow reverberation in cortical circuits. Neuron 2002, 36:955-968.
- Roxin A, Ledberg A: Neurobiological Models of Two-Choice Decision Making Can Be Reduced to a One-Dimensional Nonlinear Diffusion Equation. *PLoS Comput Biol* 2008, 4(3).

doi:10.1186/1471-2202-12-S1-P65

Cite this article as: Insabato *et al.*: Neurodynamical model of confidence decision-making in LIP. *BMC Neuroscience* 2011 12(Suppl 1):P65.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit