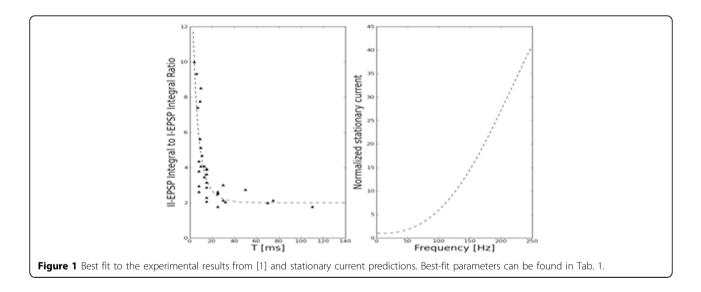
POSTER PRESENTATION

Open Access


A computational model of a strongly facilitating synapse

Joanna Jędrzejewska-Szmek^{1*}, Jarosław Żygierewicz¹, Aleksander Michalski²

From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011

We propose a new model of strongly facilitating synapse. It is described in terms of resources R which can be in two states: available and inactivated (recovery constant $-t_{\gamma}$). It assumes that for the release of neuro-transmitter to the synaptic cleft a fraction (u) of available resources must bu used (as in [2]). This fraction is elevated by every AP (by a factor ~ u^* U) and decays in

between APs (facilitation constant $-t_f$). u related to the calcium concentration. It is further assumed that the activation of the neurotransmitter release machinery requires binding of 5 calcium ions to synaptotagmin[3], binding synaptic vesicles to the presynaptic membrane. Hence the postsynaptic current is proportional to $u^{5^*}R^*\delta(t-t_{AP})$.

Table 1 Results of the models fit to the experimental data

parameter	t _f	U	t _r
Value and 68% confidence range in	10± 2 ms	0.18 ± 0.07	130 ms

* Correspondence: asia@fuw.edu.pl

¹Biomedical Physics, Faculty of Physics, University of Warsaw, ul.Hoża 69, 00-681 Warszawa, Poland

Full list of author information is available at the end of the article

The model allows to derive analytic formulas for the measures reported in the experimental literature, e.g. EPSP integrals [1] for consecutive action potentials arriving at the synapse. Those measures were used to estimate the model parameters so that it corresponds to the synapses reported in [1]. The obtained parameter values (Table 1) are in the physiologically plausible range. The best fit curve is presented in Fig. 1. The model allows to make predictions which can be used to validate it. In our case – the stationary current

© 2011 Jęędrzejewska-Szmek et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(normalized to the typical synaptic current) which can be seen in Fig. 1 – information coding is possible for physiological spike frequencies.

Author details

¹Biomedical Physics, Faculty of Physics, University of Warsaw, ul.Hoża 69, 00-681 Warszawa, Poland. ²Laboratory of Neurobiology of Development and Evolution, Nencki Institute of Experimental Biology, ul.L.Pasteura 3, 02-093 Warszawa, Poland.

Published: 18 July 2011

References

- Thomson AM: Activity-dependent properties of synaptic transmission at two classes of connections made byrat neocortical pyramidal axons in vitro. J Physiol 1997, 502:131-147.
- Markram H, Wang Y, Tsodyks M: Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 1998, 95(9):5323-532.
- Fuson KL, Montes M, Robert JJ, Sutton RB: Structure of human synaptotagmin 1 C2AB in the Absence of Ca2+ reveals a novel domain association. *Biochemistry* 2007, 46:13041-13048.

doi:10.1186/1471-2202-12-S1-P159

Cite this article as: Jędrzejewska-Szmek et al.: A computational model of a strongly facilitating synapse. BMC Neuroscience 2011 12(Suppl 1):P159.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit