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Abstract

Background: Apolipoprotein-E (apoE) plays important roles in neurobiology and the apoE4 isoform increases risk
for Alzheimer's disease (AD). ApoE3 and apoE2 are known to form disulphide-linked dimers in plasma and
cerebrospinal fluid whereas apoE4 cannot form these dimers as it lacks a cysteine residue. Previous in vitro
research indicates dimerisation of apoE3 has a significant impact on its functions related to cholesterol homeostasis
and amyloid-beta peptide degradation. The possible occurrence of apoE dimers in cortical tissues has not been
examined and was therefore assessed. Human frontal cortex and hippocampus from control and AD post-mortem
samples were homogenised and analysed for apoE by western blotting under both reducing and non-reducing
conditions.

Results: In apoE3 homozygous samples, ~12% of apoE was present as a homodimer and ~2% was detected as a
43 kDa heterodimer. The level of dimerisation was not significantly different when control and AD samples were
compared. As expected, these dimerised forms of apoE were not detected in apoE4 homozygous samples but
were detected in apoE3/4 heterozygotes at a level approximately 60% lower than seen in the apoE3 homozygous
samples. Similar apoE3 dimers were also detected in lysates of SK-N-SH neuroblastoma cells and in freshly prepared
rabbit brain homogenates. The addition of the thiol trapping agent, iodoacetamide, to block reactive thiols during
both human and rabbit brain sample homogenisation and processing did not reduce the amount of apoE
homodimer recovered. These data indicate that the apoE dimers we detected in the human brain are not likely to

be post-mortem artefacts.

conseqguences.

Conclusion: The identification of disulphide-linked apoE dimers in human cortical and hippocampal tissues
represents a distinct structural difference between the apoE3 and apoE4 isoforms that may have functional

Background

Apolipoprotein-E (apoE) is a ~34 kDa protein that plays
important roles in lipid transport and neurobiology
[1,2]. In humans, apoE exists as three major isoforms
apoE2, apoE3 and apoE4 which differ in their Cys/Arg
composition at positions 112 and 158. ApoE2 contains
Cys''?, Cys'®®; apoE3 contains Cys''?, Arg'®%; and
apoE4 contains Arg''?, Arg'®® [3]. ApoE4 is a major
genetic risk factor for late-onset Alzheimer’s disease
(AD) whereas apoE2 is associated with decreased AD
risk [4,5]. ApoE in the CNS is primarily produced by
astrocytes, although microglia and neurons may also
contribute under certain circumstances [1,6-8,8-11].
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ApoE participates in several biological processes that
extend beyond lipid transport and include immunoregu-
lation, oxidative stress, stabilization of neuronal micro-
tubules, nerve regeneration, apoptosis and amyloid-beta
(AB) peptide clearance and degradation [11-20]. Despite
intense research into the diverse biological functions of
apoE, the precise mechanism by which the apoE4 iso-
form increases AD risk remains to be fully elucidated.
However, many differences between apoE3 and apoE4
structure and function have been reported that are
potentially relevant to AD. These include: reduced lipid-
binding capacity of apoE4 due to isoform-specific
domain interactions [21], lipidated apoE4 has a lower
affinity for Ap [22,23], apoE4 is less efficient at stabiliz-
ing microtubules [14], apoE4 exhibits weaker antioxi-
dant activity [13] and apoE4 is structurally less stable

© 2010 Elliott et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:b.garner@powmri.edu.au
http://creativecommons.org/licenses/by/2.0

Elliott et al. BMC Neuroscience 2010, 11:23
http://www.biomedcentral.com/1471-2202/11/23

[24,25] when compared to apoE3. It is also clear that the
proteolytic fragmentation of apoE in the human brain is
isoform-dependent [26-29]. In addition, a significant
proportion of apoE3 (and apoE2) is present in plasma,
CSF and astrocyte conditioned media as a disulfide-
linked homodimer and as an apoE-apoA-II heterodimer
[30-34]. This may be important as apoE4 lacks Cys and
cannot form disulphide-linked dimers. In vitro studies
have shown that compared to apoE monomers, apoE
dimers possess significantly altered functional properties
in terms of their capacity to regulate cellular cholesterol
efflux and to interact with AP [30,35-38]. This further
underscores the importance of probing for the possible
occurrence of apoE dimers in the human brain. In the
present study we demonstrate that disulphide-linked
apoE homodimers and heterodimers are present in the
human cortex and hippocampus. In addition, we show
that apoE dimerisation was not affected by the presence
of AD.

Results

ApoE3 forms disulfide-linked dimers in the human brain
It is established that apoE3 forms disulphide-linked
homodimers and apoE3-apoA-II heterodimers in
human plasma and CSF [30,33]. As apoE4 lacks Cys it
cannot form disulphide bonds. Whether apoE3 exists
in a dimeric state in human brain tissue is unknown
and we therefore focused on this issue. Western blot
analysis of TBS-soluble brain homogenates derived
from the hippocampus of a control apoE3/3 subject
indicated a clear apoE3 homodimer when the sample
was run under non-reducing conditions (Fig 1A). The
homodimer was detected at ~95 kDa (as opposed to
the predicted ~68 kDa) which is consistent with pre-
vious data [30,33]. ApoE contains a major cut site for
thrombin in the linker region [39]. Due to the high
proteolytic specificity of thrombin [40,41], it was used
here to further confirm the identification of the ~95
kDa band as an apoE homodimer. The putative apoE3
homodimer was removed after incubation with throm-
bin, as predicted, further confirming that the ~95 kDa
band is not likely to be due to non-specific binding of
the antibody used.

Incubation of the homogenate in the presence of heat-
inactivated thrombin resulted in a partial loss of the
apoE dimer which suggests that endogenous proteases
may also degrade apoE (Fig 1A). A band of relatively
lower intensity was also observed at ~43 kDa in the
non-incubated apoE3 control condition. This is consis-
tent with the apoE-apoA-II heterodimer previously
detected in human plasma and CSF [30,33]. A series of
apoE fragments was also detected with a major band at
~24 kDa. This is in close agreement to our previous
observations [29].
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Additional hippocampal and frontal cortex homoge-
nates from control apoE3/3 donors were analysed and
this revealed that the apoE3 homodimer was present in
all samples and accounted for 8.3 + 0.9% (mean * SE,
n = 6) of the total apoE present in the hippocampus
and 16.5% + 4.1% (mean + SE, n = 7) of the total apoE
present in the frontal cortex (Fig 2). Although the
percentage of apoE present as the homodimer was on
average increased in the frontal cortex, this difference
did not reach statistical significance. We also analysed
frontal cortex and hippocampus derived from apoE3/3
AD samples and found that apoE3 dimers were detected
in all AD samples and were identical to those in the
control samples (Fig 1B). There was no significant
difference regarding the proportion of apoE that was
present in the dimerised form when frontal cortex from
the two groups were compared (Control 16.5 + 4.1%,
mean + SE, n = 7; AD 11.2 + 2.4%, mean * SE, n = 5).

We also used an additional rigorous extraction proto-
col employing extraction buffer that contained the
detergent Triton-X100. This was done in order to maxi-
mise recovery of apoE that may be associated with TBS-
insoluble material. Both the control and AD samples
were found to contain apoE homodimers when samples
were extracted in detergent-containing buffer (Fig 3).
These data are very similar to the results obtained with
the TBS-soluble homogenates (Fig 1).

As predicted, apoE dimers were not detected in any of
the 7 apoE4/4 AD samples analyzed (Fig 4, see also Fig
1C). Analysis of heterozygous apoE3/4 AD samples
revealed a significant 61% reduction in the percentage of
apoE3 present as homodimer as compared to apoE3/3
homozygous AD samples (AD 3/3 11.2 + 2.4%, mean *
SE, n = 5; AD 3/4 4.4% + 0.6, mean + SE, n = 5; p <
0.03). Representative blots from heterozygous apoE3/4
AD samples are shown (Fig 5).

ApoE3 forms disulphide-linked dimers in human SK-N-SH
neurons and rabbit brain

One potential issue that arises in the analysis of protein
modifications in human post-mortem material is the
potential for artifactual changes to be induced by post-
mortem interval (PMI). Even though clear ~95 kDa and
~43 kDa apoE dimers were detected in apoE3 AD
homozygous samples with a post-mortem delay of as
short as 1 h (and PMI for the AD sample shown in Fig
1B was only 7 h), we also probed for apoE dimers in
human neuroblastoma cell lysates and freshly harvested
rabbit brain. The human SK-N-SH neuroblastoma cell
line expresses the APOE €3/e3 genotype [42,43] and
synthesizes large amounts of apoE under serum starved
conditions [11], whereas rabbits are one of the few non-
human species known to contain an apoE Cys''* residue
[31].
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Figure 1 ApoE3 dimers are present in human hippocampus.
The presence of disulphide-linked dimers of apoE were detected by
analysing samples under both non-reducing “NR” and reducing “R"
SDS-PAGE conditions. The susceptibility of dimers to thrombin
cleavage was tested using three different conditions; storage at -80°
C with no enzyme added “No enz’, incubation at 37°C in the
presence of thrombin “Thr" or heat-inactivated thrombin “hi-Thr".
TBS-soluble fractions from control apoE3 (A), AD apoE3 (B) and AD
apok4 (C) homozygous hippocampal tissue samples were analysed.
Western blotting was performed using goat anti-apoE polyclonal
antibody. The human brain samples (Con n = 1, AD n = 2) are
identified according to the Case # code given in Table 1.
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Figure 2 ApoE3 dimers are present in both hippocampus and
frontal cortex of control apoE 3/3 brain homogenates.
Comparisons were made between the hippocampus and frontal cortex
in each individual control apoE3/3 brain, under non-reduced (NR) and
reduced (R) conditions. Western blotting was performed using goat
anti-apok polyclonal antibody. The human brain samples (Con n = 5)

are identified according to the Case # code given in Table 1.

Analysis of SK-N-SH cell lysates under non-reducing
conditions revealed the presence of the ~95 kDa apoE
homodimer and a more prominent (than human brain)
~43 kDa heterodimer (Fig 6A). Since the ~43 kDa
dimer could theoretically represent a disulphide-linked
apoE N-terminal domain homodimer (a predicted MW
of ~44 kDa), we used a C-terminal specific monoclonal
antibody in this experiment and the detection of the
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Figure 3 ApoE3 dimers are present in the detergent (Triton-X-
100) soluble fraction of both control and AD brain
homogenates. The presence of apoE3 dimers was assessed in the
Triton-X-100 soluble fraction of frontal cortex samples from control
apoE3/3 and AD apoE3/3 brains, under non-reduced (NR) and
reduced (R) conditions. Western blotting was performed using goat
anti-apok polyclonal antibody. The human brain samples (Con n =
2, AD n = 2) are identified according to the Case # code given in
Table 1.
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Figure 4 ApoE dimers are absent in the AD apoE4/4 brain
homogenates. The absence of apoE dimers in AD apoe4/4 brains
was confirmed in all available samples (n = 7) and compared to a
reference AD apoE3/3 brain. Samples were analysed under non-
reduced (NR) and reduced (R) conditions and western blotting was
performed using goat anti-apoE polyclonal antibody. The human
brain samples (AD n = 8) are identified according to the Case #
code given in Table 1.
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Figure 5 Proportion of apoE present as dimers is significantly
lower in heterozygous apoE3/4 AD brain homogenates. The
proportion of total apoE present as dimers was compared between
homozygous apoE3/3 and heterozygous apoE3/4 frontal cortex
homogenates, under non-reduced (NR) and reduced (R) conditions.
Western blotting was performed using goat anti-apoE polyclonal
antibody. The human brain samples (AD n = 8) are identified
according to the Case # code given in Table 1.

~43 kDa band indicates an intact C-terminus. This rules
out the presence of disulphide-linked N-terminal
domain homodimer. The ~43 kDa band may represent
an apoE3-apoA-II heterodimer as has been previously
described in human plasma and CSF [30,33].

In the analysis of rabbit frontal cortex, the brain was
dissected and processed immediately at the time of
death to eliminate post-mortem delay and all measures
were taken to prevent serum and CSF contamination
(see Materials and Methods). An apoE band at ~95 kDa
was also detected in rabbit brain when samples were
run in the non-reduced state (Fig 6B), again indicating
that apoE containing Cys''? does form a homodimer in
the brain.

To address the possibility that the observed apoE
dimerisation may occur during tissue homogenization
and processing for electrophoresis, freshly prepared
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Figure 6 ApoE3 dimers are present in SK-N-SH cell lysate and
rabbit frontal cortex. SK-N-SH cell lysate was analysed under non-
reduced (NR) and reduced (R) SDS-PAGE conditions and apoE was
detected using anti-apoE C-terminal monoclonal antibody (A). TBS-
soluble rabbit brain homogenate was analysed under NR and R
conditions and apoE detected using goat anti-apoE polyclonal
antibody (B). Two bands marked with asterisks are believed to be
due to non-specific cross-reaction with the proteins indicated
(asterisks) by Ponceau staining (B).

Page 5 of 10

rabbit brain and frozen human frontal cortex tissue (AD
apoE3/3) were homogenized in buffer containing the
thiol trapping agent iodoacetamide. Homogenization
was also performed using a detergent-rich lysis buffer to
delipidate apoE-containing lipoproteins and help prevent
the possibility of dimers forming spontaneously on lipo-
protein particles during homogenization and processing.
The presence of 100 mM iodoacetamide did not result
in a decrease in apoE homodimer levels in either rabbit
or human brain tissue (Fig 7A). The thiol-trapping effi-
ciency of 100 mM iodoacetamide was confirmed by
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Figure 7 ApoE dimer is not artificially formed during sample
homogenisation and processing. Freshly prepared rabbit and
frozen human brain tissue (AD apoE3/3, AD 5) was homogenised in
a detergent-rich lysis buffer either with or without the thiol-trapping
agent iodoacetamide (lodo) used at a final concentration of 100
mM. The effect of lodo on the presence of apoE dimers was
assessed under non-reduced (NR) and reduced (R) conditions by
western blot, using goat anti-apoE polyclonal antibody (A). The
extent of thiol-trapping by lodo was determined by measuring the
total thiol present, using DTNB assay (B). Data in B are means of
triplicate readings with S.E. represented by error bars. *** P < 0.0001.
The human brain sample (AD n = 1) is identified according to the
Case # code given in Table 1.
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spectrophotometric analysis of the total thiol concentra-
tion of the homogenates using Ellman’s reagent (5,5'-
Dithio-bis(2-nitrobenzoic acid)). The total thiol concen-
tration was significantly reduced in both rabbit and
human brain homogenates (84% and 96%, respectively)
treated with iodoacetamide (Fig 7B). This data demon-
strates that apoE dimers are not artificially formed dur-
ing tissue homogenization and processing, and further
indicates that apoE dimers are generated in the brain.

Discussion

This study demonstrates for the first time that apoE3 dis-
ulphide-linked dimers are present in human frontal cor-
tex and hippocampus. Furthermore, strikingly similar
dimers were also detected in human neuroblastoma cells
expressing apoE3 and in freshly prepared rabbit brain.
These data indicate that apoE3 dimerisation is a physio-
logically relevant process in the human brain; as it is in
human CSF and plasma [30,33]. The biological functions
of these apoE dimers in the brain is not yet clear, how-
ever, several studies support the possibility that they may
have distinct properties that differ from apoE monomer.
Previous studies have demonstrated that apoE3 homodi-
mers and apoE3-apoA-II heterodimers have diminished
low-density lipoprotein receptor binding activity (20%
and 30%, respectively) in comparison to apoE3 monomer
[30,35]. In vitro studies have shown that the apoE-apoA-
II dimer is more effective than apoE monomer in binding
soluble AB1-42 and inhibiting its internalisation by neu-
rons [36,37]. In addition, a recent study has demon-
strated that the apoE3 homodimer is more effective than
monomeric apoE3 at enhancing ABCA1-dependent lipid
efflux from neurons [38].

Based on these data, it seems possible that the
reported physiological properties of apoE dimers may
enhance some of the AD-protective functions attributed
to apoE3. For example, the role of apoE in AP clearance
and degradation [18,20] may be facilitated by enhanced
binding with AB1-42 [37]. In addition, the enhanced
neuronal cholesterol efflux that is induced by apoE
dimers as compared to monomers [38] may be impor-
tant considering that high levels of neuronal cholesterol
can influence processing of the amyloid precursor pro-
tein and increase AP production [44-47]. Thus dimerisa-
tion may represent one mechanism by which apoE3 and
apoE2 have a distinct AD-protective advantage over
apoE4. However, this feature alone is probably not the
crucial regulator underlying apoE genotype-associated
risk as the dimers were detectable at similar levels in
apoE3 homozygous control and AD samples.

Conclusion
In conclusion, the presence of apoE3 dimers in the
human brain represents a fundamental structural

Page 6 of 10

difference between apoE3 and apoE4. A greater under-
standing of the biological consequences of this differ-
ence may shed light on the isoform-dependent
influences of apoE on AD risk.

Methods

Human brain tissue

Brain tissue samples were obtained through the Austra-
lian Brain Donor Program with ethics approval from the
University of New South Wales Human Research Ethics
Committee (approval No. HREC03322). The research
was carried out in compliance with the Helsinki
Declaration. Cortical neuritic plaques and neurofibrillary
tangles were assessed according to current international
standards in order to pathologically confirm the diagno-
sis of AD post-mortem [48,49]. Sample details are pro-
vided in Table 1.

Human tissue preparation

Samples were taken from the frontal cortex or hippo-
campus; both areas that are affected by AD [50]. The
homogenisation protocol was previously described in
detail [29], and was used for all samples unless stated
otherwise. In brief, between 60-90 mg of brain tissue
was homogenized with a pre-chilled 1 mL glass dounce
homogenizer, using 15 volumes of ice-cold tris-buffered
saline (TBS) pH 7.4. Protease and phosphatase inhibitors
(Calbiochem, San Diego, USA) were added to all sam-
ples except those to be used in experiments requiring
enzyme addition (samples C6, AD5 and AD6). After
centrifugation at 16,000 g for 25 minutes at 4°C the
TBS-soluble supernatant fraction was collected. Where
specified, the pellet was then washed with 50 pL of TBS
and centrifuged again for 5 min, the supernatant was
then discarded and pellet was resuspended in 15
volumes of TBS containing protease and phosphatase
inhibitors and 1% (w/v) Triton X-100 (TBS-X) by pipet-
ting up and down. Samples were then mixed by rotation
for 30 min at 4°C, followed by centrifugation at 16,000 g
for 25 min at 4°C and collection of the TBS-X soluble
supernatant fraction.

A second protocol was also used, where specified, to
homogenise brain tissue in a detergent-rich lysis buffer.
In brief, brain tissue was homogenized with a pre-chilled
1 mL glass dounce homogenizer, using 10 volumes of
DRLB (50 mM Tris-HCI, pH 8.0, 150 mM NacCl, 0.1%
SDS, 0.5% IGEPAL CA-630, 0.5% sodium deoxycholate)
with protease and phosphatase inhibitors and either
with or without 100 mM iodoacetamide (Sigma) to trap
thiol groups and thus prevent changes in disulphide
bond status during homogenization and sample proces-
sing [51]. Homogenates were then centrifuged at 16,000
g for 10 min at 4°C in an Eppendorf 5417-R refrigerated
Microfuge and the supernatants collected.
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Table 1 Brain donor information
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Case # Diagnosis Sex APOE genotype Age at death PMI  Brain regions analysed = ApoE homodimer as % of total apoE
CON 1 Normal F €3/e3 73 60 FC H 235,114
CON 2 Normal F €3/€3 83 24 FCGH 21.3; 9.
CON 3 Normal F €3/e3 77 36 FC 4.2

CON 4 Normal M €3/€3 79 60 FGH 16.7; 10
CON 5 Normal M €3/€3 82 43 FGH 334; 66
CON 6 Normal F €3/€3 93 21 FCGH 247;6.15
CON 7 Normal F €3/€3 85 23 FCGH 13.73; 6.75
AD 1 AD F €3/€3 79 4 FC 44

AD 2 AD M €3/€3 60 FC 104

AD 3 AD M €3/€3 75 1 FC 19.13

AD 4 AD M €3/€3 70 35 FCGH 12.55; 7.56
AD 5 AD F €3/€3 94 7 FCGH 9.54; 12.16
AD 6 AD F €3/e4 83 3 FC 361

AD 7 AD M €3/e4 73 16 FC 2.28

AD 8 FAD F €3/e4 47 69 FC 494

AD 9 FAD M €3/e4 51 5 FC 52

AD 10 AD M €3/e4 83 36 FC 5.88

AD 11 AD M €4/e4 74 5 FGH 0

AD 12 AD F €4/e4 75 80 FC 0

AD 13 AD F €4/e4 68 44 FC 0

AD 14 AD M €4/e4 83 25 FC 0

AD 15 AD F €4/e4 78 24 FC 0

AD 16 AD M e4/e4 67 60 FC 0

AD 17 AD F e4/e4 84 74 FC 0

Brain donor information (AD, Alzheimer’s disease; FAD, familial Alzheimer's disease; C, control; PMI, post-mortem interval (hours); H, hippocampus; FC, frontal

cortex)

Rabbit tissue preparation

An adult male Watanabe rabbit was euthanased via
cardiac puncture using 5 mL Lethabarb (1 mL per 2
kg body weight, Virbac, Sydney, Australia) and the
brain surgically removed to dry ice and processed
immediately in order to eliminate post-mortem delay.
Approximately 100 mg of tissue was removed from the
cerebral cortex, all visible vasculature was removed
and the sample was rinsed three times in ice-cold
phosphate-buffered saline (PBS). The sample was then
homogenized following the protocol used above for the
human samples.

ApoE genotyping

Genomic DNA was extracted from brain tissue and
APOE amplified by PCR. Briefly, each reaction (50 pL)
contained 200 nM of each primer (Invitrogen, Carlsbad,
CA) 5-TCCAAGGAGCTGCAGGCGGCGCA-3’ (for-
ward) and 5-ACAGAATTCGCCCCGGCCTGGTA-
CACTGCCA-3’ (reverse), 2 mM dNTPs, 2 mM MgCI2,
2 U Taq polymerase (PCR reagents supplied by Pro-
mega, Madison, WI) and 400 ng DNA, all combined in
nuclease free H,O. Amplification was carried out with
38 cycles of denaturation (95°C, 30 sec), annealing (60°

C, 30 sec) and extension (70°C, 30 sec). The 244 bp
PCR product was purified using the QIAquick PCR pur-
ification kit (Qiagen, Venlo, Netherlands), following the
manufacturer’s protocol, and eluted in 40 pL H,O.
Endonuclease restriction digests (25 pL) were performed
on 15 pL of eluted DNA using either AfIIII (5 U) or
Haell (20 U) in the presence of BSA (100 pg/mL) and
the supplied buffer (New England Biolabs, Ipswich, MA)
at 37°C for 16 h. The €3 allele is resistant to both
enzymes while €4 is cleaved by AfIIII (producing a 190
bp product) and €2 is cleaved by Haell (producing a 191
bp product) assessed using ethidium bromide stained 8%
polyacrylamide gels.

SK-N-SH neuroblastoma cell culture

Cell culture media and additives were from Invitrogen
(Melbourne, Australia). Human neuronal SK-N-SH cells
were routinely grown in DMEM, 10% (v/v) fetal calf
serum (FCS), 2 mM glutamine, and 100 IU/ml penicillin
and 100 pg/ml streptomycin. Cultures were grown in 75
cm? flasks at 37°C in 5% CO, and plated into 6-well
plates for use in experiments. To induce apoE expres-
sion, SK-N-SH cells were cultured under serum starved
conditions (5 days of culture without media
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replenishment) and harvested in cell lysis buffer (10 mM
Tris-HCI, 10 mM Na,PO,/NaHPO,, pH 7.5, 130 mM
NaCl, 1% Triton-X-100, 10 mM NaPP;) as described
previously [11]. SK-N-SH cells have been shown to be
apoE3/3 homozygous [42,43].

Western blotting

Bicinchoninic acid protein assays were performed on
brain homogenate samples and equal amounts of pro-
tein were separated on 12% SDS-PAGE gels and trans-
ferred onto 0.45 pm nitrocellulose membranes at 100 V
for 30 min. Membranes were Ponceau-stained and
scanned before blocking overnight at 4°C in PBS con-
taining 5% (w/v) non-fat dry milk. The membranes were
then probed with the relevant antibodies at 22°C for 1 h
to reveal the bands of interest. Concentrations of antibo-
dies were: goat polyclonal anti-human apoE 1/5000
(Calbiochem) or mouse monoclonal anti-human apoE
21-F3-D2 1/1000 (Biogenesis, Poole, UK). The mem-
branes were washed three times in PBS containing 0.1%
(w/v) Tween-20 and then incubated with horseradish
peroxidase-conjugated rabbit anti-goat (Dako, 1/2500)
or rabbit anti-mouse (Dako, 1/1000) secondary antibody
for 1 h. The proteins of interest were detected using
enhanced chemiluminescence (ECL, Amersham Bios-
ciences) and X-ray film. Signal intensity was quantified
using Image-] software. Specifically, a fixed area was
used to separately measure signal intensity from i) the
region encompassing intact ~34 kDa and fragmented
~24 kDa apoE, ii) apoE homodimer at ~95 kDa, and iii)
an adjacent blank region to serve as a background con-
trol. The background value (iii) was subtracted from the
apoE measurements (i and ii) and the homodimer quan-
tification was expressed as a percentage of total apoE.
Where possible, relative differences between samples
were assessed on the same blots or using simultaneously
processed gels with identical film exposure times.

Enzymatic treatment of brain homogenates

Thrombin digestion was performed by incubating brain
homogenates (30 ug of protein) prepared in the absence
of protease inhibitors with 4.5 U of thrombin (Sigma,
St. Louis, MO) in PBS at 37°C for 16 hours. Two control
conditions were also analysed: homogenates either stored
at -80°C for the incubation period or incubated with
thrombin that was heat-inactivated at 95°C for 15 minutes.

Thiol quantification

The concentration of total thiol groups, both protein-
bound and free, in specified brain homogenates was
determined using 5,5’-dithio-bis(2-nitrobenzoic acid)
(DTNB, Sigma) also known as ‘Ellman’s Reagent’ as
described previously [52]. Briefly, a 30 pL volume of
brain homogenate (either undiluted or diluted in
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homogenisation buffer) was combined with 75 pL of
dilution buffer (30 mM Tris HCI, 3 mM EDTA pH 8.2),
25 pL of DTNB reagent (1.19 mg/mL DTNB in metha-
nol) and 400 pL methanol. Samples were centrifuged at
3000 g for 5 min at room temperature. 3 x 90 pL ali-
quots of supernatant were collected and absorbance was
measured at 415 nm. Thiol concentration was deter-
mined by reference to a cysteine (Sigma) standard curve.
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