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Abstract
Background: The impairment of the pontine reticular formation (PRF) has recently been revealed
to be histopathologically connected with focal-cortical seizure induced generalized convulsive status
epilepticus. To elucidate whether the impairment of the PRF is a general phenomenon during status
epilepticus, the focal-cortical 4-aminopyridine (4-AP) application was compared with other epilepsy
models. The presence of "dark" neurons in the PRF was investigated by the sensitive silver method
of Gallyas in rats sacrificed at 3 h after focal 4-AP crystal or systemic 4-AP, pilocarpine, or kainic
acid application. The behavioral signs of the developing epileptic seizures were scored in all rats.
The EEG activity was recorded in eight rats.

Results: Regardless of the initiating drug or method of administration, "dark" neurons were
consistently found in the PRF of animals entered the later phases of status epilepticus. EEG
recordings demonstrated the presence of slow oscillations (1.5-2.5 Hz) simultaneously with the
appearance of giant "dark" neurons in the PRF.

Conclusion: We argue that the observed slow oscillation corresponds to the late periodic
epileptiform discharge phase of status epilepticus, and that the PRF may be involved in the
progression of status epilepticus.

Background
Status epilepticus is an emergency in clinical practice, but
the detailed mechanism of its pathology is less well
known. In fact, very few studies have examined the clini-
cal consequences of status epilepticus as a single morbidity
[1], although a progressive sequence of electroencephalo-
graphic (EEG) changes during generalized convulsive sta-
tus epilepticus (GCSE) has been described [2]. GCSE

typically begins as partial-onset status epilepticus and sec-
ondarily generalizes [3].

Recently, by combination of EEG monitoring and a sensi-
tive silver method of Gallyas [4-7], we discovered two
"dark" neuron populations that may be of crucial impor-
tance in generalization of epileptic seizures and the pro-
gression of status epilepticus [8]. Histopathologically,
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epileptic seizures can produce "dark" morphological
change in neurons [9], and these affected neurons are
selectively and "spectacularly" visualized by the Gallyas
silver method [10,11]. In our study, epileptic seizures
induced by focal-cortical application of K+ channel
blocker 4-aminopyridine (4-AP) developed into status epi-
lepticus with a slow oscillation (~1.5 Hz) at 6 h, which was
correlated with the appearance of both "dark" neurons in
the pontine reticular formation (PRF) and "dark"
interneurons in the hippocampus [8]. The temporal pro-
file of neuronal injury in the hippocampus is well
described [6] and it is known that spontaneous seizures
preferentially injure interneurons in the hippocampus [4].
Therefore, in this study we focused on the PRF.

It is not known whether the giant neurons of the PRF are
involved in the progression of status epilepticus, although
electrophysiological studies have suggested that the PRF
may participate in generation and maintenance of the epi-
leptic state [12-15]. Nevertheless, experimental histopa-
thology experiments have not investigated the PRF for the
presence of "dark" neurons following pilocarpine- or kai-
nic acid-induced status epilepticus [6].

In this study, we investigated the PRF for "dark" neurons
3 hours after the induction of epileptic seizures. Focal-cor-
tical application of 4-AP was compared with systemic
administration of 4-AP, pilocarpine or kainic acid. "Dark"
neurons were found in the PRF in all prolonged status epi-
lepticus cases. It is also known from previous studies that
brief seizures can confer tolerance against prolonged sei-
zures and neuronal damage [7,16-19] for example, prior
administration of 4-AP protects against kainic acid-
induced neuronal cell death [20]. To investigate this, a
cumulative approach was invoked to bring about status
epilepticus. When the first attempt with 4-AP or pilocarpine
failed to induced status epilepticus, we used kainic acid on
the following day. Despite possible tolerance against cell
injury, "dark" neurons were still consistently found in the
PRF.

Results
Focal-cortical 4-AP crystal application
Out of the four rats examined histopathologically, three
entered status epilepticus at 3 h. All three rats had giant
"dark" neurons in their PRF (Table 1), both in the oral and
caudal pontine reticular field (PnO, PnC; Figure 1A,C)
and also in the medullary reticular field (Gi; Figure 2A).
One animal did not enter status epilepticus, and no "dark"
neurons were found in its PRF (Table 1).

Systemic injections of 4-AP
Out of the four rats examined, two entered status epilepti-
cus at 3 h, and they had giant "dark" neurons in their PRF

(Table 1), in the PnO, PnC and in the mesencephalic and
medullary reticular field (Gi). Two animals did not enter
status epilepticus, and no "dark" neurons were found in
their PRF (Table 1).

Systemic injections of pilocarpine
Five of the six rats examined entered status epilepticus at 3
h, and all five had giant "dark" neurons in their PRF
(Table 1), in the PnO, PnC (Figure 1B, D; and see Addi-
tional file 1B) and Gi (Figure 2B). One animal did not
enter status epilepticus, and no "dark" neurons were found
in its PRF (see Additional file 1A; Table 1).

Systemic injections of kainic acid
Two out of the four rats examined entered status epilepticus
at 3 h, and both had giant "dark" neurons in their PRF
(Table 1). The two other animals did not enter status epi-
lepticus, but they reached Stage-3 of the behavioral scor-
ing: forelimb clonus and "wet dog shakes". In one of these
animals 4-5 "dark" neurons were found in its PRF, the
other had none (Table 1).

Systemic injections of kainic acid as a second treatment
In these animals, the 4-AP or pilocarpine injection did not
produce status epilepticus. Kainic acid was injected on the
following day. Despite the possible tolerance effect in
these animals that would reduce the numbers of "dark"
neurons, the "dark" neurons were consistently found in
the PRF. Out of the four rats examined, two received 4-AP
a day before. After kainic acid injection, these rats entered
status epilepticus at 3 h and their PRF contained 15-30 giant
"dark" neurons (see Table 1 and Figure 3). Two rats
received pilocarpine treatment a day before. After kainic
acid injection, one of these rats entered status epilepticus at
3 h and had 10-15 "dark" neurons in its PRF. The other rat
had multiple seizures without status epilepticus and had 4-
5 "dark" neurons in its PRF (Table 1).

EEG analysis
The EEG was examined in eight rats (see ac4E, pi4E, pi6E,
ka1-4E and ak2E in Table 1). Five rats entered status epilep-
ticus after their respective treatment. The one-hour power
spectral density (PSD) showed a high peak at 1-1.5 Hz in
case of focal-cortical crystal treatment (Figure 1G), a
prominent peak at 1.5-2.0 Hz and a high increase in
power at around 6 Hz in case of pilocarpine treatment
(Figure 1H, and see Additional file 2) at 3 hour. From the
four kainic acid injected rats as a single treatment two
entered status epilepticus and they had a prominent peak at
1.5-2.0 Hz in their PSD (see Additional file 2). In case of
rat ak2E, after its 4-AP i.p. injection, the one-hour PSD
showed only a smaller peak at 2 Hz, but after its kainic
acid injection there was a prominent, high peak at around
2.0-2.5 Hz (Figure 3D).
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Giant "dark" neurons (A, B, C and D) in the pontine reticular formation at 3 hours survival time after focal-cortical 4-AP crystal application (A and C) and systemic injection of pilocarpine (B and D)Figure 1
Giant "dark" neurons (A, B, C and D) in the pontine reticular formation at 3 hours survival time after focal-
cortical 4-AP crystal application (A and C) and systemic injection of pilocarpine (B and D). The PnO (A, B) and 
PnC (C, D) are symmetrically involved in both cases. The representative EEG periods demonstrate the late phase of the gener-
alized convulsive status epilepticus (E and F). Three hours after the 4-AP application, the power spectral density (PSD) graph of 
the one-hour-long EEG recording shows a high peak at the slow frequencies (1-1.5 Hz; G). After the pilocarpine injection, the 
PSD analysis also shows a peak at the slow frequencies (1.5-2 Hz) and an additional increase in the power at around 6 Hz (H). 
The control PSDs (gray lines) were calculated from 30 min EEG recordings before the treatment of each rat. Abbreviations: ISS 
and CSS: ipsi- and contralateral somatosensory cortex, CFC: contralateral frontal cortex, 6: abducens nucleus, 7n: facial nerve 
or its root, CG: central grey, DRV: dorsal raphe nucleus, ventral part, IRt: intermediate reticular nucleus, mlf: medial longitudi-
nal fasciculus, MnR: median raphe nucleus, P5: peritrigeminal zone, Pa6: paraabducens nucleus, pd: predorsal bundle, PDTg: 
posterodorsal tegmental nucleus, PMnR: paramedian raphe nucleus, PnC: pontine reticular nucleus, caudal part, PnO: pontine 
reticular nucleus, oral part, scp: sup cerebellar peduncule, SPTg: subpeduncular tegmental nucleus, ts: tectospinal tract, tz: trap-
ezoid body, 4-AP: 4-aminopyridine, PILO: pilocarpine. Scale bars: A, B, C and D = 400 μm, E and F = 200 μV.
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Discussion
In this study, we demonstrated that the pontine reticular
formation is affected in status epilepticus. It is not com-
pletely unknown that the PRF may participate in the gen-
eralization and maintenance of epileptic state. Glutamate
microinjections into the pons induces electrographic sei-
zures and clonic convulsions [13]. Infusion of NMDA
antagonists into the PRF inhibits the generation of tonic
and clonic seizures induced by electroshock or pentylene-
tetrazol [12,14]. PRF neurons are implicated in seizure
propagation in several forms of generalized clonic sei-
zures, including audiogenic seizures [15]. Furthermore,
human fMRI and SPECT studies have also shown the
involvement of the pons in epileptic seizures [21-23].

The injured giant "dark" neurons of the PRF in this study
were found by the Gallyas silver staining method. This
sensitive method highlights the injured cells in a Golgi-
like manner, but does not provide any information about
the fate of the highlighted "dark" neurons. On the other
hand, it has long been known that the epilepsy-induced
"dark" neurons are able to recover [24]. Previous his-
topathological studies have demonstrated that the com-
pacted "dark" neurons have a high potential for recovery,
but this capacity is influenced by the local environment
with its (patho-)metabolic processes [25,26]. The "dark"
neurons at issue are in an otherwise undamaged environ-
ment, so we regard the observed "dark" neurons in the
PRF as injured cells with the capacity to recover. Neverthe-
less, the gigantocellular network of the PRF was affected in
our study during status epilepticus, independently of the
way the status epilepticus was induced.

Regarding the functional consequence of injury to the
gigantocellular network of PRF, it is well known from the
classic discovery of Moruzzi and Magoun, that high-fre-
quency stimulation of the reticular formation produces an
arousal response in the cortex. The stimulation is the most
effective in bringing about arousal when it is applied to
the PRF [27]. Lesions of the reticular formation produce a
state of deep sleep or coma, block the arousal, and lead to
low frequency/high amplitude activity in the EEG [28,29].
This resembles the slow oscillation developed in our
experiments in connection with status epilepticus, so we
could regard the observed slow oscillation as the electro-
physiological consequence of the formation of "dark",
compacted, dysfunctional neurons in the PRF.

The observed slow oscillation is not completely unknown
in epilepsy research. In kindled animals, delayed slow
rhythmic outlasting activities were reported at ~1.5 Hz,
which gradually developed following successive acute sei-
zures [30]. The occurrence of interictal slow delta activities

The "dark" gigantocellular network in the ponto-medullar reticular formation at 3 hours survival time, after the admin-istration of focal-cortical 4-AP crystal, pilocarpine or kainateFigure 2
The "dark" gigantocellular network in the ponto-
medullar reticular formation at 3 hours survival 
time, after the administration of focal-cortical 4-AP 
crystal, pilocarpine or kainate. The giant "dark" neurons 
are stained together with their long dendrites in the giganto-
cellular reticular field (Gi). Scale bars: A, B and C = 80 μm.
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were also reported in patients with epilepsy, and the pres-
ence of these electric activities was associated with more
severe forms of epilepsy [31-33]. Rhythmic diffuse delta
frequency activity was also reported in non-convulsive sta-
tus epilepticus [34,35].

Treiman et al. described the distinct EEG patterns that
occur during prolonged episodes of status epilepticus. They
found that these identifiable EEG patterns occur in a pre-
dictable order during status epilepticus, and the progression
of EEG changes during status epilepticus follows a common
electrical sequence regardless of the initiating factors [2].
The last phase of these patterns was called periodic epilep-
tiform discharges, and it has a low frequency. Later this
periodic epileptiform discharges (PEDs) phase was subdi-
vided into early and late PEDs [36]. Early PEDs were char-
acterized by monomorphic periodic discharges with a
relatively short flat background at around ~1.5 Hz. Late
PEDs showed complex polymorphic periodic discharges
with a longer flat background at less than ~1.0 Hz [37].
The slow oscillations in our study would represent the
early PEDs, and it is worth noting that significantly ele-
vated glucose utilization rates were observed in the PRF
during this phase of status epilepticus [36].

Our hypothesis about the generalization of the slow oscil-
lation is the following. The giant neurons of the PRF are
receiving intense activation during the repeated epileptic
seizures, and their intense activation causes the ascending
reticular activating system (ARAS) to promote the general-
ization of the seizures. The giant neurons of the PRF are
glutamatergic, and they innervate each other, sending
their long ascending projections primarily to the intrala-

minar nuclei of the thalamus, which in turn project to
widespread cortical regions [38]. The seizure-related
hyper-excitability of these glutamatergic neurons is
reflected in their elevated glucose utilization. The sus-
tained depolarization, on the other hand, results in ele-
vated intracellular Ca++ levels in the PRF and ultimately an
injured, compacted state: the formation of "dark" neu-
rons. We think that the giant "dark" neurons are suspend-
ing their activity or not responding properly to synaptic
(sensory) activation. This will result in a depression of the
functioning of the PRF network and because of the depres-
sion of the ARAS, generalized, synchronized slow oscilla-
tion in the cortical EEG develops [28]. It is notable that
the observed slow oscillation, and especially the late PEDs
phases of the status epilepticus are resemble to the 'slow'
neocortical oscillation described by Steriade [39,40].

Generalized slow neocortical activity is also associated
with EEG changes during the state of coma [29,41]. This
could be important, as experimental animals in pro-
longed status epilepticus could also enter post-ictal coma
before full recovery [42,43]. Lesions in the PRF are associ-
ated with brainstem coma [29], but lesions in the reticular
formation have been found in brains of people who have
post-polio fatigue syndrome [44,45]. Similarly post-ictal
fatigue is one of the symptoms that can help distinguish
patients with epileptic seizures from those with non-epi-
leptic seizures [46], and this could also suggest the
involvement of the PRF in epileptic seizures.

Conclusion
We argue that the PRF is affected during status epilepticus,
and its involvement could be important in the progres-

Table 1: Comparison of focal-cortical and systemic models at 3 h

4-AP crystal (n = 4) 4-AP i.p. (n = 4) Pilocarpine (n = 6) Kainic Acid (n = 8)

i.d. PRF
DN

Bhv.
scr.

SE EEG i.d. PRF
DN

Bhv.
scr.

SE EEG i.d. PRF
DN

Bhv.
scr.

SE EEG i.d. PRF
DN

Bhv.
scr.

SE EEG

ac1 - 3 - ai1 - 3 - pi1 - 3 - ka1E +++ 4 + 5
ac2 ++ 5 + ai2 - 3 - pi2 + 5 + ka2E + 3 - 3
ac3 +++ 5 + ai3 ++ 5 + pi3 +++ 5 + ka3E +++ 4 + 5
ac4E +++ 5 + 5 ai4 +++ 5 + pi4E +++ 5 + 5 ka4E - 3 - 2

pi5 +++ 5 +
pi6E +++ 5 + 5

ak1 2 - pk1 2 - ak1 ++ 5 +
ak2E 3 - 1 pk2 2 - ak2E +++ 5 + 5

pk1 + 4 -
pk2 ++ 5 +

i.d.: animal i.d., PRF DN: number of „dark” neurons in the PRF, Bhv.scr.: behavioral scoring with Racine Scale; SE: if Status Epilepticus developed (+) 
or not (-), EEG: Treiman's EEG phases,
The relative numbers of "dark" neurons averaged from five 60-μm sections of the pontine and medullar reticular formation are expressed with a 
semi-quantitative grading scale as follows: +: 1-5 "dark" neurons; ++: 5-15 "dark" neurons, +++: 15-30 "dark" neurons.
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sion of the observed slow oscillation corresponding to the
periodic epileptiform discharges phase of status epilepticus.

Methods
Animals
Twenty-six adult male Sprague-Dawley rats (250-300 g;
Charles RiverLaboratories, Hungary) were kept in stand-
ard conditions under a 12 h light-dark cycle and food and
water were supplied ad libitum. The experiments were car-
ried out on the basis of local ethical rules in accordance
with the Hungarian Act of Animal Care and Experimenta-
tion (1998, XXVIII, section 243/1998), which conforms
to the regulation of animal experiments in the European
Community. All efforts were made to minimize pain and
suffering and to reduce the number of animals used.

Focal-cortical 4-AP application
Rats (n = 5) were anesthetized with a 1-1.5% halothane
(Narcotan, Leciva, Praha, Czech Republic)-air mixture
and secured in a stereotaxic frame (David Kopf, USA). For
the focal 4-AP application, a hole (1.5 mm in diameter)
was drilled into the skull above the right parieto-occipital
cortex (A: 6.2 mm, L: 2.5 mm) [47]. The dura mater was
carefully removed, and a piece of 4-AP crystal (0.5 mg/kg,
Sigma-Aldrich, Hungary) was locally placed onto the cor-
tex. The hole was covered with a piece of artificial fibrin
sponge (Spongostan, Hungaropharma, Budapest, Hun-
gary). Forty minutes thereafter, the hole was washed out
with physiological saline, covered with bone wax
(Medicommers Kft., Budapest, Hungary), and the haloth-
ane anesthesia was discontinued. Four rats were examined
histopathologically, out of the five receiving this treat-
ment. One rat died at 2-h, and it was not examined.

Systemic injections of 4-AP, pilocarpine and kainic acid
Seizures were induced by systemic injections of 4-AP (4-
amionpyridine; Sigma-Aldrich, Hungary, 4.5-5 mg/kg; n =
7, i.p.), pilocarpine (pilocarpine hydrochloride; Sigma-
Aldrich, Hungary, 340-370 mg/kg; n = 6, i.p.) or kainic
acid (kainic acid, Sigma-Aldrich, Hungary, 10 mg/kg; n =
4, s.c.). Approximately 10 min after 4-AP, pilocarpine or
kainic acid injections the animals had seizures and in
about 1.5 hours most of the animals entered status epilep-
ticus. During the 4-AP i.p. experiments, three rats died
soon after receiving the treatment, and they were not
examined histopathologically.

Systemic injections of kainic acid as a second treatment 
after 4-AP or pilocarpine
As a cumulative approach to bring about status epilepticus
when the others failed, kainic acid was also injected as a
second treatment. The kainic acid treatment was per-
formed on 4 animals that received 4-AP (n = 2) or pilo-
carpine (n = 2) injections a day before, but did not
produce status epilepticus. Kainic acid (kainic acid, Sigma-

Giant "dark" neurons in the pontine reticular formation (A and B) at 3 hours survival time after intramuscular injection of kainic acid (KA)Figure 3
Giant "dark" neurons in the pontine reticular forma-
tion (A and B) at 3 hours survival time after intra-
muscular injection of kainic acid (KA). The Golgi-like 
staining highlights the giant "dark" neurons of the oral pon-
tine reticular field (PnO; A) and caudal pontine reticular field 
(PnC; B). The representative EEG period demonstrates the 
generalized convulsive status epilepticus (C). On the one-
hour PSD graphs, there is a smaller peak at 2 Hz after the 4-
AP injection a day before the kainic acid treatment (red line), 
while there is a prominent, high peak in the PSD at 2-2.5 Hz 
at 3 hours after the KA (D). The control PSD (gray line) was 
calculated from a 30 min EEG recording before the kainic 
acid treatment. Abbreviations: ISS and CSS: ipsi- and contral-
ateral somatosensory cortex, CFC: contralateral frontal cor-
tex. Scale bars: A = 100 μm, B = 50 μm, C = 300 μV.
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Aldrich, Hungary, 10 mg/kg; n = 4) was injected subcuta-
neously on the following day, and in about 1.5 hours
most of the animals entered status epilepticus.

Behavioral scoring
To score the behavior of the rats after the induction of epi-
leptic seizures, the Racine Scale was used [48] with modi-
fications [49,50]. Specifically, Stage-0: no response; Stage-
1: behavioral arrest (motionless), hair raising and rapid
breathing salivation or hyperactivity, restlessness and
vibrissae twitching (movement of the lips, tongue and
vibrissae); Stage-2: head nodding, head and eye clonus
(myoclonic jerks); Stage-3: forelimb clonus (unilateral or
bilateral limb clonus) and "wet dog shakes"; Stage-4:
clonic seizures (forelimb clonic seizures) and clonic rear-
ing; Stage-5: generalized clonic seizures with falling,
uncontrollable jumping, and in the later phase, atonia.

EEG recordings
In eight rats (4-AP crystal, pilocarpine and kainic acid),
EEG recordings were also made before the histology. In
these animals, one week prior to the induction of the epi-
leptic seizures, under halothane anesthesia, six holes were
drilled into the superficial layer of the skull above the
frontal, the somatosensory and the parieto-occipital corti-
ces bilaterally; each was filled with conductive paste,
through which a stainless-steel electrode was inserted. The
electrodes and the connector were embedded in dental
acrylic. This way the electrodes were firmly fixed to the
skull but the dura were not pierced. In five animals, 2-3
hours prior to the induction of the epileptic seizures,
under halothane anesthesia, six EEG electrodes were
firmly clipped to the bare skin above the skull in similar
positions as above. These electrodes and the connector
were also embedded in dental acrylic. The EEG activity
was recorded by a Grass EEG 8B model (Grass Instru-
ments, Quincy, MA, USA), filtered at 0.3 Hz to 70 Hz and
amplified (20 k). Data was recorded with a CED 1401 sys-
tem using SPIKE2 v2.1 software (Cambridge Electronic
Design Limited, Cambridge, UK). The sampling rate was
3000 Hz. From the 60-minute records the power spectral
density (PSD) was calculated (NeuroExplorer v.3.2, Nex
Technologies, MA, USA). The specific parameters used
were: Max. Freq. (Hz) = 10 Hz; Number of fr. values = 512;
Interval filter = None; Smooth = None.

The five identifiable EEG phases, which occur during the
course of the GCSE were: (1) discrete seizures; (2) merg-
ing seizures with waxing and waning amplitude and fre-
quency of EEG rhythms; (3) continuous ictal activity; (4)
continuous ictal activity punctuated by low voltage 'flat
periods'; and (5) periodic epileptiform discharges on a
'flat' background [2].

Perfusion and tissue sectioning
Rats were deeply anesthetized with an overdose of ure-
thane (2 g/kg i.p., Sigma-Aldrich, Hungary), and perfused
through the aorta with physiological saline followed by
4% buffered paraformaldehyde [11]. Brains were
removed from the skull 1 day later, then immersed in the
same fixative for 1-3 days and frozen-sectioned at 60 μm.

Silver staining of "dark" neurons
Sections were incubated for 16 h at 56°C (esterification)
in 1-propanol (Reanal, Budapest, Hungary) containing
1.2% sulfuric acid (Carlo Erba Reagents, Italy). Following
a 5-minute treatment in 1% acetic acid (Reanal, Budapest,
Hungary), they were immersed in a silicotungstate physi-
cal developer until the background turned yellowish-
brown [11]. Development was terminated by washing in
1% acetic acid for 30 min. Sections were dehydrated,
mounted, embedded in DePex (Fluka, Hungary) and cov-
erslipped.

List of abbreviations
PRF: pontine reticular formation; GCSE: generalized con-
vulsive status epilepticus; 4-AP: 4-aminopyridine; SE: status
epilepticus; PnO: oral and pontine reticular field; PnC: cau-
dal pontine reticular field; Gi: medullary reticular field;
NMDA: N-methyl-D-aspartic acid; PSD: power spectral
density; PEDs: periodic epileptiform discharges; ARAS:
ascending reticular activating system.

Authors' contributions
BP conceived of the study and carried out the experiments.
VK participated in the experiments. KAK participated in
the design of the study and coordination. GJ participated
in the design of the study, coordination and helped to
draft the manuscript. AC conceived of the study, partici-
pated in its design and drafted the manuscript. All authors
read and approved the final manuscript.

Additional material

Additional file 1
Negativ control (A) and giant „dark” neurons (B) in the oral part of the 
pontine reticular formation, 3 hours after systemic injection of pilo-
carpine. Scale bars: 200 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-10-133-S1.pdf]

Additional file 2
Representative EEG periods demonstrate the generalized convulsive status 
epilepticus after pilocarpine (A) and kainic acid (C and E) injections. 
One-hour PSD graphs show high peaks at the slow frequencies (1.5-2 Hz) 
after pilocarpine (B) and kainic acid injection (D and F). Scale bars: A, 
C and E = 200 μV.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-10-133-S2.pdf]
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