Volume 8 Supplement 2

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007

Open Access

Learning in spatially extended dendrites

  • Carl-Magnus Svensson1Email author,
  • Stephen Coombes1 and
  • Yulia Timofeeva2
BMC Neuroscience20078(Suppl 2):P200

DOI: 10.1186/1471-2202-8-S2-P200

Published: 6 July 2007

Dendrites are not static structures, new synaptic connections are established and old ones disappear. Moreover, it is now known that plasticity can vary with distance from the soma [1]. Consequently it is of great interest to combine learning algorithms with spatially extended neuron models. In particular this may shed further light on the computational advantages of plastic dendrites, say for direction selectivity or coincidence detection. Direction selective neurons fire for one spatio-temporal input sequence on their dendritic tree but stay silent if the temporal order is reversed [2], whilst "coincidence-detectors" such as those in the auditory brainstem are known to make use of dendrites to detect temporal differences in sound arrival times between ears to an astounding accuracy [3]. Here we develop one such combination of learning and dendritic dynamics by extending the "Spike-Diffuse-Spike" [4] framework of an active dendritic tree to incorporate both artificial (tempotron style [5]) and biological learning rules (STDP style [2]).

Authors’ Affiliations

School of Mathematical Sciences, University of Nottingham
Department of Computer Science, University of Warwick


  1. Froemke RC, Poo MM, Dan Y: Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature. 2005, 434 (7030): 221-225. 10.1038/nature03366.PubMedView ArticleGoogle Scholar
  2. Mo C-H, Gu M, Koch C: A learning rule for local synaptic synaptic interactions between excitation and shunting inhibition. Neural Computation. 2004, 16: 2507-2532. 10.1162/0899766042321788.PubMedView ArticleGoogle Scholar
  3. Agmon-Snir H, Carr CE, Rinzel J: The role of dendrites in auditory coincidence detection. Nature. 1998, 393: 268-272. 10.1038/30505.PubMedView ArticleGoogle Scholar
  4. Timofeeva Y, Lord GJ, Coombes S: Spatio-temporal filtering properties of a dendritic cable with active spines: a modeling study in the spike-diffuse-spike framework. J Comput Neurosci. 2006, 21 (3): 293-306. 10.1007/s10827-006-8776-4.PubMedView ArticleGoogle Scholar
  5. Gutig R, Somplinsky H: The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci. 2006, 9 (3): 420-428. 10.1038/nn1643.PubMedView ArticleGoogle Scholar


© Svensson et al; licensee BioMed Central Ltd. 2007

This article is published under license to BioMed Central Ltd.