Volume 11 Supplement 1

Nineteenth Annual Computational Neuroscience Meeting: CNS*2010

Open Access

Optimization of neuronal morphologies for pattern recognition

  • Giseli de Sousa1Email author,
  • Reinoud Maex1,
  • Rod Adams1,
  • Neil Davey1 and
  • Volker Steuber1
BMC Neuroscience201011(Suppl 1):P80

DOI: 10.1186/1471-2202-11-S1-P80

Published: 20 July 2010

Previous studies have shown that the morphology of a neuron can affect its firing pattern [1, 2]. Specifically, some neuronal morphologies tend to favour bursting, where short sequences of spikes are interspersed with pauses in firing [1, 2]. This type of bursting behaviour has been observed in cerebellar Purkinje cells (PCs), and previous work on associative memory in PCs has shown that the generation of burst-pause sequences can be important for information storage in the cerebellum [3]. These results have implications for the coding of information in the brain, but they are specific to one particular neuron with a highly specialised morphology. In this study we therefore use a general approach to optimise generic neuronal structures for pattern recognition, while analysing how their morphology influences their firing pattern.

To study how the ability of a neuron to perform pattern recognition depends on morphology, we have built a genomic representation of neuronal models, focusing as a first objective on optimising dendritic architectures. The optimization process uses an evolutionary algorithm and involves four steps. Firstly, genotypes are generated, which specify binary tree structures [4]. Secondly, the genotype is expressed as a model neuron phenotype, in which the branching pattern is derived from the genotype, and which is then converted to a multi-compartmental model written in NEURON simulation code. Thirdly, the fitness values are assessed by evaluating the pattern recognition performance. Finally, genetic variation is introduced, using a process where the genes are modified by crossover and mutation operators. Unlike previous work that focussed on generating a subset of realistic neuronal morphologies for specific computational tasks [5], our representation ensures that the algorithm can generate the set of all possible morphologies for a specific number of terminal branches. The fitness function evaluates pattern recognition performance as described previously [3, 6], by storing a number of input patterns based on changing synaptic weights and quantifying the ability of the model to distinguish the set of stored patterns from a set of novel patterns. The discrimination between stored and novel patterns is evaluated for different features of the spike response and quantified by calculating a signal-to-noise ratio. The evolved artificial neuronal morphologies are compared with reconstructed morphologies from real neurons. An extension of the work involves optimizing other neuronal features such as types and distributions of ion channels and the spatial structure of inputs in patterns.

Authors’ Affiliations

Science and Technology Research Institute, University of Hertfordshire


  1. Mainen ZF, Sejnowski TJ: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 1996, 382: 363-366.View ArticlePubMedGoogle Scholar
  2. van Ooyen A, Duijnhouwer J, Remme M, van Pelt J: The effect of dendritic topology on firing patterns in model neurons. Network: Computation in Neural Systems. 2002, 13: 311-325.View ArticleGoogle Scholar
  3. Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E: Cerebellar LTD and Pattern Recognition by Purkinje Cells. Neuron. 2007, 54 (1): 121-136.PubMed CentralView ArticlePubMedGoogle Scholar
  4. Van Pelt J, Uylings HBM, Verwer RWH, Pentney RJ, Woldenberg MJ: Tree asymmetry--A sensitive and practical measure for binary topological trees. Bulletin of Mathematical Biology. 1992, 54 (5): 759-784.View ArticlePubMedGoogle Scholar
  5. Stiefel KM, Sejnowski TJ: Mapping Function Onto Neuronal Morphology. J Neurophysiol. 2007, 98 (1): 513-526.PubMed CentralView ArticlePubMedGoogle Scholar
  6. de Sousa G, Adams R, Davey N, Maex R, Steuber V: The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex. Adaptive and Natural Computing Algorithms. 2009, 413-422.View ArticleGoogle Scholar


© de Sousa et al; licensee BioMed Central Ltd. 2010

This article is published under license to BioMed Central Ltd.