Volume 10 Supplement 1

Eighteenth Annual Computational Neuroscience Meeting: CNS*2009

Open Access

Pinwheel crystallization in a dimension reduction model of visual cortical development

BMC Neuroscience200910(Suppl 1):P63

DOI: 10.1186/1471-2202-10-S1-P63

Published: 13 July 2009

The primary visual cortex (V1) of higher mammals contains a topographic representation of visual space in which neighborhood-preserving maps of several variables describing visual features such as position in visual space, line orientation, movement direction, and ocularity are embedded [1]. It has been hypothesized that the complex spatial layouts of these representations can be interpreted as ground states of a smooth mapping of a high-dimensional space of visual stimulus features to an effectively two dimensional array of neurons [2, 3]. Competitive Hebbian models of cortical development have been widely used to numerically study the properties of such mappings [25], but no analytical results about their ground states have been obtained so far. A classical example of such dimension reducing mappings is the Elastic Network Model (EN), which was proposed in [2].

Here we use a perturbative approach to compute the ground states of the EN for the joint mapping of two visual features: (i) position in visual space, represented in a retinotopic map and (ii) line orientation, represented in an orientation preference map (OPM). In this framework, the EN incooporates a mapping from a four-dimensional feature space to the twodimensional cortical sheet of neurons. We show that the dynamics of both feature representations can be treated within a general theory for the stability of OPMs [6]. We find various ground states as a function of the lateral intracortical interactions and external stimulus distribution properties. However, in all parameter regimes, the grounds states of the Elastic Network Model are either stripe-like, or crystalline representation of the two visual features. We present a complete phase diagram of the model, summarizing pattern selection. Analytical predictions are confirmed by direct numerical simulations. Our results question previous studies (see [5] and references therein) concluding that the EN correctly reproduces the spatially aperiodic arrangement of visual cortical processing modules.

Authors’ Affiliations

(1)
Department of Nonlinear Dynamics, Max-Planck-Institute for Dynamics and Self-Organization
(2)
Bernstein Center for Computational Neuroscience
(3)
Faculty of Physics, University of Göttingen
(4)
IMPRS, Physics of Biological and Complex Systems

References

  1. Blasdel G, Salama G: Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature. 1986, 321: 579-585. 10.1038/321579a0.PubMedView ArticleGoogle Scholar
  2. Durbin R, Mitchison G: A dimension reduction framework for understanding cortical maps. Nature. 1990, 343: 644-646. 10.1038/343644a0.PubMedView ArticleGoogle Scholar
  3. Obermayer K, Ritter H, Schulten K: A principle for the formation of the spatial structure of cortical feature maps. PNAS. 1990, 87: 8345-8349. 10.1073/pnas.87.21.8345.PubMed CentralPubMedView ArticleGoogle Scholar
  4. Kohonen T: Self-organization and associative memory. 1983, New York: Springer-VerlagGoogle Scholar
  5. Goodhill RG: Contributions of theoretical modeling to the understanding of neural map development. Neuron. 2007, 56: 301-311. 10.1016/j.neuron.2007.09.027.PubMedView ArticleGoogle Scholar
  6. Wolf F: Symmetry, multistability, and long-range interactions in brain development. PRL. 2005, 95: 208701-10.1103/PhysRevLett.95.208701.View ArticleGoogle Scholar

Copyright

© Keil and Wolf; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd.

Advertisement