Volume 10 Supplement 1

Eighteenth Annual Computational Neuroscience Meeting: CNS*2009

Open Access

Controlling neuronal fluctuations for directed exploration during reinforcement learning

BMC Neuroscience200910(Suppl 1):P138

DOI: 10.1186/1471-2202-10-S1-P138

Published: 13 July 2009


Neuronal and synaptic fluctuations have both been proposed to underly reward controlled learning [1, 2] and have been used to explain song learning in songbird area RA [3]. The songbird area LMAN provides perturbations to area RA that are necessary for learning [4], suggesting that LMAN might target specific subsets of RA neurons and control the corresponding noise level for directed experimentation. Here we explore this hypothesis by investigating algorithms for controlling the amount of noise in order to yield efficient reinforcement learning in large networks. Our research is guided by previous work on exploration for learning which exploits information gain [5]. We find that noise control can strongly increase learning efficiency thereby attenuating the curse of dimensionality. Our results suggest that area LMAN controls experimentation by targeted control and injection of noise into RA, which might have testable implications also for learning in other motor pathways.

Authors’ Affiliations

Institute for Theoretical Physics, University Bremen


  1. Xie X, Seung HS: Learning in neural networks by reinforcement of irregular spiking. Physical Review E 69. 2004, 041909-10.1103/PhysRevE.69.041909.Google Scholar
  2. Seung HS: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron. 2003, 40: 1063-1073. 10.1016/S0896-6273(03)00761-X.PubMedView ArticleGoogle Scholar
  3. Fiete I, Fee M, Seung HS: Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. Journal of Neurophysiology. 2007, 98: 2038-2057. 10.1152/jn.01311.2006.PubMedView ArticleGoogle Scholar
  4. Ölveczky B, Andalman A, Fee M: Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol. 2005, 3: e153-10.1371/journal.pbio.0030153.PubMed CentralPubMedView ArticleGoogle Scholar
  5. Si B, Pawelzik K: Robot exploration by subjectively maximizing objective information gain. Robotics and Biometrics IEEE International Conference. 2004, 930-935.Google Scholar


© Areval and Pawelzik; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd.